期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots 被引量:13
1
作者 jinsong dong Miguel A. PiSeros +5 位作者 Xiaoxuan Li Haibing Yang Yu Liu Angus S. Murphy Leon V. Kochian dong Liu 《Molecular Plant》 SCIE CAS CSCD 2017年第2期244-259,共16页
The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mec... The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps 10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi defi- ciency, hpslO is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electro- genic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi defi- ciency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots. 展开更多
关键词 phosphate deficiency root architecture iron homeostasis ABC transporter ALUMINUM SENSI-TIVE3 AtS TAR1
原文传递
Inositol Pyrophosphate lnsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis 被引量:8
2
作者 jinsong dong Guojie Ma +13 位作者 Liqian Sui Mengwei Wei Viswanathan Satheesh Ruyue Zhang Shenghong Ge Jinkai Li Tong-En Zhang Christopher Wittwer Henning JJessen Huiming Zhang Guo-Yong An Dai-Yin Chao dong Liu Mingguang Lei 《Molecular Plant》 SCIE CAS CSCD 2019年第11期1463-1473,共11页
The maintenance of cellular phosphate(Pi)homeostasis is of great importance in living organisms.The SPX domain-containing protein 1(SPX1)proteins from both Arabidopsis and rice have been proposed to act as sensors of ... The maintenance of cellular phosphate(Pi)homeostasis is of great importance in living organisms.The SPX domain-containing protein 1(SPX1)proteins from both Arabidopsis and rice have been proposed to act as sensors of Pi status.The molecular signal indicating the cellular Pi status and regulating Pi homeostasis in plants,however,remains to be identified,as Pi itself does not bind to the SPX domain.Here,we report the identification of the inositol pyrophosphate lnsP8 as a signaling molecule that regulates Pi homeostasis in Arabidopsis.Polyacrylamide gel electrophoresis profiling of InsPs revealed that lnsP8 level positively cor­relates with cellular Pi concentration.We demonstrated that the homologs of diphosphoinositol pentaki-sphosphate kinase(PPIP5K),VIH1 and VIH2,function redundantly to synthesize lnsP8,and that the vih1 vih2 double mutant overaccumulates Pi.SPX1 directly interacts with PHR1,the central regulator of Pi star­vation responses,to inhibit its function under Pi-replete conditions.However,this interaction is compro­mised in the vih1 vih2 double mutant,resulting in the constitutive induction of Pi starvation-induced genes,indicating that plant cells cannot sense cellular Pi status without lnsP8.Furthermore,we showed that lnsP8 could directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1 and PHR1.Collectively,our study suggests that lnsP8 is the intracellular Pi signaling molecule serving as the ligand of SPX1 for controlling Pi homeostasis in plants. 展开更多
关键词 nositol pyrophosphates lnsP8 phosphate signal SPX domain Pi homeostasis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部