期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Simple-structured hydrophilic sensors for sweat uric acid detection with laser-engraved polyimide electrodes and cellulose paper substrates
1
作者 Linhe Xu Xueshan Hu +8 位作者 Shuang Zhou Ze Zhang Junxian Zhang Chao Li Daxian Zuo Hao Liu Gang Chen Jiayu Wan jinsong tao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期443-448,共6页
Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophi... Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophilic substrates.Here,we designed and developed simple,low-cost,and hydrophilic sweat UA detection sensors constructed by carbon electrodes and cellulose paper substrates.The carbon electrodes were made by carbonized polyimide films through a simple,one-step laser engraving method.Our electrodes are porous,possess a large specific surface area,and are flexible and conductive.The substrates were composed of highly hydrophilic cellulose paper that can effectively collect,store,and transport sweat.The constructed electrodes demonstrate high sensitivity of 0.4μA Lμmol^(-1)cm^(-2),wide linear range of 2–100μmol/L.In addition,our electrodes demonstrate high selectivity,excellent reproducibility,high flexibility,and outstanding stability against mechanical bending,temperature variations,and extended storage periods.Furthermore,our sensors have been proven to provide reliable results when detecting UA levels in real sweat and on real human skin.We envision that these sensors hold enormous potential for use in the prognosis,diagnosis,and treatment of gout. 展开更多
关键词 Laser-engraved carbon POLYIMIDE Cellulose paper HYDROPHILICITY Sweat uric acid
原文传递
Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles 被引量:7
2
作者 jinsong tao Shing Fung Chow Ying Zheng 《Acta Pharmaceutica Sinica B》 SCIE CSCD 2019年第1期4-18,共15页
Nanoparticles are considered to be a powerful approach for the delivery of poorly watersoluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, ... Nanoparticles are considered to be a powerful approach for the delivery of poorly watersoluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation(FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles,polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer(CIJM), multi-inlet vortex mixer(MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly watersoluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up. 展开更多
关键词 Poorly WATER-SOLUBLE drug FLASH NANOPRECIPITATION Microfluidic MIXER device NANOPARTICLES
原文传递
Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording 被引量:4
3
作者 Yichuan Guo Zhiqiang Fang +9 位作者 Mingde Du Long Yang Leihou Shao Xiaorui Zhang Li Li Jidong Shi jinsong tao Jinfen Wang Hongbian Li Ying Fang 《Nano Research》 SCIE EI CAS CSCD 2018年第10期5604-5614,共11页
Advances in neural electrode technologies can have a significant impact on both fundamental and applied neuroscience. Here, we report the development of flexible and biocompatible neural electrode arrays based on a na... Advances in neural electrode technologies can have a significant impact on both fundamental and applied neuroscience. Here, we report the development of flexible and biocompatible neural electrode arrays based on a nanopaper substrate. Nanopaper has important advantages with respect to polymers such as hydrophilicity and water wettability, which result in significantly enhanced biocompatibility, as confirmed by both in vitro viability assays and in vivo histological analysis. In addition, nanopaper exhibits high flexibility and good shape stability. Hence, nanopaper-based neural electrode arrays can conform to the convoluted cortical surface of a rat brain and allow stable multisite recording of epileptiform activity in vivo. Our results show that nanopaper-based electrode arrays represent promising candidates for the flexible and biocompatible recording of the neural activity. 展开更多
关键词 NANOPAPER neural electrode BIOCOMPATIBILITY FLEXIBLE EPILEPSY
原文传递
The Impact of Internet of Things Supported by Emerging 5G in Power Systems: A Review 被引量:5
4
作者 jinsong tao Muhammad Umair +1 位作者 Muhammad Ali Jian Zhou 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第2期344-352,共9页
The Internet of Things(IoT)is playing an important role in providing access to affordable,clean and green energy worldwide through the use of smart devices.The current electric power networks will be more reliable,sec... The Internet of Things(IoT)is playing an important role in providing access to affordable,clean and green energy worldwide through the use of smart devices.The current electric power networks will be more reliable,secure,flexible and durable by implementing IoT in power systems.This paper presents a brief discussion about IoT contributions in the development of power systems from a generation,transmission,distribution and consumption point of view.5G cellular networks have a great potential for the development of IoT technology.Additionally,5G cellular networks can be instrumental in supporting the greater communication needs of IoT.This review provides a comprehensive analysis about the role of 5G cellular networks in the growth of IoT technology and power systems.Large amounts of data will be generated due to the incorporation of renewable energy,deployment of the smart grid and the improvements to the electricity market.In this way,in order to realize the connection between things and people,things and things and people and people in power systems,it is essential to apply IoT in power systems.In this case,5G is providing numerous advantages to Power IoT(PIoT)by offering greater opportunities in progress and improvements;however,there are also numerous challenges with the deployment of 5G in PIoT.Finally,this review article provides an overview of the role,implications and challenges of 5G in PIoT. 展开更多
关键词 Fifth Generation(5G) Internet of Things(IoT) Power IoT(PIoT)
原文传递
Uptake and traffcking of different sized PLGA nanoparticles by dendritic cells in imiquimod-induced psoriasis-like mice model 被引量:2
5
作者 Zibei Lin Long Xi +6 位作者 Shaokui Chen jinsong tao Yan Wang Xin Chen Ping Li Zhenping Wang Ying Zheng 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第4期1047-1055,共9页
Psoriasis is an autoimmune infammatory disease,where dendritic cells(DCs)play an important role in its pathogenesis.In our previous work,we have demonstrated that topical delivery of curcumin-loaded poly(lactic-co-gly... Psoriasis is an autoimmune infammatory disease,where dendritic cells(DCs)play an important role in its pathogenesis.In our previous work,we have demonstrated that topical delivery of curcumin-loaded poly(lactic-co-glycolic acid)(PLGA)nanoparticles(NPs)could treat Imiquimod(IMQ)-induced psoriasis-like mice.The objective of this study is to further elucidate biofate of PLGA NPs after intradermal delivery including DCs uptake,and their further traffcking in psoriasis-like mice model by using fuorescence probes.Two-sized DiO/DiI-loaded PLGA NPs of 50±4.9 nm(S-NPs)and 226±7.8 nm(L-NPs)were fabricated,respectively.In vitro cellular uptake results showed that NPs could be internalized into DCs with intact form,and DCs preferred to uptake larger NPs.Consistently,in vivo study showed that L-NPs were more captured by DCs and NPs were frstly transported to skindraining lymph nodes(SDLN),then to spleens after 8 h injection,whereas more S-NPs were transported into SDLN and spleens.Moreover,FRET imaging showed more structurally intact L-NPs distributed in skins and lymph nodes.In conclusion,particle size can affect the uptake and traffcking of NPs by DCs in skin and lymphoid system,which needs to be considered in NPs tailing to treat infammatory skin disease like psoriasis. 展开更多
关键词 Psoriasis PLGA nanoparticles Fluorescence Dendritic cells Fluorescence resonance energy transfer Lymphoid organs Uptake and traffcking Biofate
原文传递
Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control
6
作者 jinsong tao Zijian Li +1 位作者 Xinlai Peng Gaoxiang Ying 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期93-104,共12页
Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also kn... Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event, 展开更多
关键词 Green stormwater infrastructure (GSI) Combined sewer overflows (CSOs) Urban flooding Low impact development (LID) Stormwater Management Model (SWMM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部