期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
机械驱动生成自支撑的流苏状镍钴磷酸盐电极及其在超级电容器中的应用
1
作者 冯含芳 徐进 +3 位作者 王乐辰 曹晋玮 李华阳 朱光 《Science China Materials》 SCIE EI CAS CSCD 2024年第8期2671-2682,共12页
过渡金属磷酸盐(TMPs)虽然具有优异的理论比容量和良好的晶体结构,但由于层间结构严重堆积导致的低比电容和倍率性能阻碍了其实际应用.本文首次采用水热搅拌法制备了由超薄纳米片组成的流苏状镍钴磷酸盐(NCP)电极.超薄纳米片可以同时提... 过渡金属磷酸盐(TMPs)虽然具有优异的理论比容量和良好的晶体结构,但由于层间结构严重堆积导致的低比电容和倍率性能阻碍了其实际应用.本文首次采用水热搅拌法制备了由超薄纳米片组成的流苏状镍钴磷酸盐(NCP)电极.超薄纳米片可以同时提供大的比表面积、超多的活性位点和畅通的离子传输路径.制备的Ni_(2)C(PO_(4))_(2)(NCP-2)电极在2mA cm^(−2)下的比电容为2518mC cm^(−2)(1007Cg-1),在50mAcm^(−2)时的电容保持率为76.7%,优于先前报道的其他TMPs电极.根据密度泛函理论(DFT)计算结果,NCP-2电极表现出更高的电导率和更强的OH-吸附能.此外,以NCP-2和石墨烯水凝胶分别作为正负极组装成的混合超级电容器(HSC)具有高能量密度和高功率密度.充满电后,HSC可以点亮发光二极管(LED)灯5分钟以上.此外,该电极可与鞋垫形摩擦纳米发电机结合,以收集和储存人类行走时的机械能.此外,还可将其用作柔性压阻传感器的电源.本水热搅拌法可以扩展到其他电活性材料的制备. 展开更多
关键词 混合超级电容器 比电容 压阻传感器 机械驱动 摩擦纳米发电机 层间结构 搅拌法 正负极
原文传递
Development of high-throughput wet-chemical synthesis techniques for material research
2
作者 Zhuyang Chen Dongdong Lu +5 位作者 jinwei cao Fu Zhao Guang Feng Chen Xu Yonghong Deng X.-D.Xiang 《Materials Genome Engineering Advances》 2023年第1期35-57,共23页
Combining material big data with artificial intelligence constitutes the fourth paradigm of material research.However,the sluggish development of highthroughput(HT)experimentation has resulted in a lack of experimenta... Combining material big data with artificial intelligence constitutes the fourth paradigm of material research.However,the sluggish development of highthroughput(HT)experimentation has resulted in a lack of experimentally verified and validated material data,which has become the bottleneck of data-driven material research.Wet-chemical synthesis has the benefits of low equipment cost and scalability,but traditional wet-chemical techniques are time-consuming and ineffective at disclosing the interrelationships between synthesis,compositions,structures,and performance.Constructing a HT workflow in wet-chemical synthesis is crucial to achieving the preparation of multidimensional materials and establishing the composition-structure-synthesis-performance relationships of functional materials for diverse applications.In this review,the most recent development in HT wet-chemical synthesis techniques for material research are analyzed in depth.Additionally,the application of HT wet-chemical synthesis in the fabrication of advanced hydrogels and catalysts is demonstrated through illustrative instances.Finally,this review suggests possible paths for enhancing the efficiency of HT experimentation and data acquisition in order to facilitate more effective material discovery. 展开更多
关键词 artificial intelligence HIGH-THROUGHPUT material genome wet-chemical synthesis
原文传递
High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure 被引量:2
3
作者 Jin Xu Huayang Li +7 位作者 Yiming Yin Xin Li jinwei cao Hanfang Feng Wandi Bao Hao Tan Fanyuan Xiao Guang Zhu 《npj Flexible Electronics》 SCIE 2022年第1期581-592,共12页
Flexible piezoresistive pressure sensor with high sensitivity over a broad linearity range have been attracting tremendous attention for its applications in health monitoring,artificial intelligence,and human-machine ... Flexible piezoresistive pressure sensor with high sensitivity over a broad linearity range have been attracting tremendous attention for its applications in health monitoring,artificial intelligence,and human-machine interfaces.Herein,we report a hierarchical insitu filling porous piezoresistive sensor(HPPS)by direct ink writing(DIW)printing and curing of carbon nanofibers(CNFs)/polydimethylsiloxane(PDMS)emulsion.Hierarchical geometry significantly increases the contact area,distributes stress to multilayered lattice and internal porous structure,resulting in a broad sensing range.Moreover,unlike conventional hollow porous structure,the CNFs networks in-situ filling porous structure generates more contact sites and conductive pathways during compression,thereby achieving high sensitivity and linearity over entire sensing range.Therefore,the optimized HPPS achieves high sensitivity(4.7 kPa^(−1))and linearity(coefficient of determination,R^(2)=0.998)over a broad range(0.03-1000 kPa),together with remarkable response time and repeatability.Furthermore,the applications in diverse pressure scenarios and healthcare monitoring are demonstrated. 展开更多
关键词 POROUS structure attracting
原文传递
Ultra-robust stretchable electrode for e-skin:In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction 被引量:1
4
作者 jinwei cao Fei Liang +14 位作者 Huayang Li Xin Li Youjun Fan Chao Hu Jing Yu Jin Xu Yiming Yin Fali Li Dan Xu Hanfang Feng Huali Yang Yiwei Liu Xiaodong Chen Guang Zhu Run-Wei Li 《InfoMat》 SCIE CAS 2022年第4期124-137,共14页
The development of stretchable electronics could enhance novel interface structures to solve the stretchability-conductivity dilemma,which remains a major challenge.Herein,we report a nano-liquid metal(LM)-based highl... The development of stretchable electronics could enhance novel interface structures to solve the stretchability-conductivity dilemma,which remains a major challenge.Herein,we report a nano-liquid metal(LM)-based highly robust stretchable electrode(NHSE)with a self-adaptable interface that mimics water-tonet interaction.Based on the in situ assembly of electrospun elastic nanofiber scaffolds and electrosprayed LM nanoparticles,the NHSE exhibits an extremely low sheet resistance of 52 mΩsq^(-1).It is not only insensitive to a large degree of mechanical stretching(i.e.,350%electrical resistance change upon 570%elongation)but also immune to cyclic deformation(i.e.,5%electrical resistance increases after 330000 stretching cycles with 100%elongation).These key properties are far superior to those of the state-of-the-art reports.Its robustness and stability are verified under diverse circumstances,including long-term exposure to air(420 days),cyclic submersion(30000 times),and resilience against mechanical damages.The combination of conductivity,stretchability,and durability makes the NHSE a promising conductor/electrode solution for flexible/stretchable electronics for applications such as wearable on-body physiological signal detection,human-machine interaction,and heating e-skin. 展开更多
关键词 crack confinement functional e-skin in situ assembly self-adaptable interface ultra-robust stretchable electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部