期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improvement of mechanical properties and investigation of strengthening mechanisms on the Ti_(3)AlC_(2) ceramic with nanosized WC addition
1
作者 Yi Zhong Ying Liu +3 位作者 Qinkai Jiang Na Jin Zifeng Lin jinwen ye 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期861-876,共16页
Ti_(3)AlC_(2) (TAC) has great potential for use as an ablation material in aerospace applications due to its great oxidation/ablation resistance, but its high-temperature strength and thermal shock resistance still ha... Ti_(3)AlC_(2) (TAC) has great potential for use as an ablation material in aerospace applications due to its great oxidation/ablation resistance, but its high-temperature strength and thermal shock resistance still have much room for simultaneous improvement under fast temperature variation conditions. Herein, we used Ti_(3)AlC_(2) and WC powders as raw materials and successfully fabricated textured (Ti,W)_(3)AlC_(2) ceramic with small amounts of TiC and Al_(2)O_(3), and room temperature mechanical properties such as flexural strength (1146±46.9 MPa), fracture toughness (11.78±0.44 MPa·m^(1/2)), and hardness (5.81±0.11 GPa) at 5 wt% WC addition were achieved. The high-temperature strength of the ceramic was significantly improved, and better thermal shock resistance from 298 to 1173 K was simultaneously acquired together with the regulation of the elastic modulus, thermal conductivity, and thermal expansion coefficient, providing (Ti,W)_(3)AlC_(2) with more possibilities for fast-temperature variation applications. Strengthening and toughening mechanisms were proposed. Scanning transmission electron microscopy high-angle annular dark-field imaging (STEM-HADDF) showed that W randomly replaced the Ti1 and Ti2 sites of Ti_(3)AlC_(2), providing a good reference for establishing crystal models, and further density functional theory (DFT) calculations based on these models indicated a higher fracture energy of (Ti,W)_(3)AlC_(2) along different crystal planes, providing superior resistance to transgranular fracture;a lower mismatch degree of (Ti,W)_(3)AlC_(2)/Al_(2)O_(3) resulted in stronger interface bonding, resulting in greater resistance to intergranular fracture as well as more balanced stress distributions at different interfaces. 展开更多
关键词 mechanical properties solid solution MAX phase transmission electron microscopy(TEM) CERAMIC atomic structure
原文传递
Enhancing Fe content tolerance in A356 alloys for achieving low carbon footprint aluminum structure castings
2
作者 Guodong Niu Jianfeng Wang +1 位作者 jinwen ye Jian Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第30期180-191,共12页
Low carbon footprint aluminum structure castings are the mainstream development direction of alu-minum alloys in the future.Enhancing the Fe content tolerance upper limit in casting aluminum alloys is considered an ef... Low carbon footprint aluminum structure castings are the mainstream development direction of alu-minum alloys in the future.Enhancing the Fe content tolerance upper limit in casting aluminum alloys is considered an effective way to promote the application of recycled aluminum production.In this work,it was found that with the Ce and TiCN NPs(nanoparticles)addition simultaneously to A356 alloys,the acicular Fe-rich phases(β-Al 5 FeSi)which damages the properties can be changed into beneficial phases(core-shell heterostructures)for the alloy,and hence the mechanical properties of A356 alloys can be im-proved.The TiCN nanoparticles and rare element Ce play crucial roles in the formation of core-shell het-erostructures.The formation mechanism of core-shell heterostructure was also systematically researched from the perspective of thermodynamics and kinetics.This study provides a simple and feasible strategy to eliminate the harmful effects of Fe impurity and contributes to the industrialization of low carbon footprint aluminum structure castings. 展开更多
关键词 A356 casting aluminum alloys HETEROSTRUCTURE Carbon neutral TiCN nano particles Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部