期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
2012年北美放射学年会前列腺影像学最新研究进展 被引量:4
1
作者 李亮 冯朝燕 +2 位作者 jinxiang yu Oguz Akin 王良 《磁共振成像》 CAS CSCD 2013年第3期166-171,共6页
第98届北美放射学年会(RSNA 2012)在美国芝加哥召开,该届大会共收录与前列腺相关的论文共58篇,以MRI为主,超声、PET等技术在前列腺中的的论文相对较少。这些论文主要关注于不同成像技术间的组合和优化在前列腺癌诊断与鉴别诊断中的应用... 第98届北美放射学年会(RSNA 2012)在美国芝加哥召开,该届大会共收录与前列腺相关的论文共58篇,以MRI为主,超声、PET等技术在前列腺中的的论文相对较少。这些论文主要关注于不同成像技术间的组合和优化在前列腺癌诊断与鉴别诊断中的应用价值。作者对以上方面的研究进展进行综述,旨在为我国前列腺影像学研究提供新的思路。 展开更多
关键词 前列腺 磁共振成像 超声检查 综述文献
下载PDF
Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm 被引量:34
2
作者 yuchen SONG Datong LIU +2 位作者 Yandong HOU jinxiang yu yu PENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期31-40,共10页
Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a criti... Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a critical part and determines the lifetime and reliability. The Relevance Vector Machine (RVM) is a data-driven algorithm used to estimate a battery's RUL due to its sparse feature and uncertainty management capability. Especially, some of the regressive cases indicate that the RVM can obtain a better short-term prediction performance rather than long-term prediction. As a nonlinear kernel learning algorithm, the coefficient matrix and relevance vectors are fixed once the RVM training is conducted. Moreover, the RVM can be simply influenced by the noise with the training data. Thus, this work proposes an iterative updated approach to improve the long-term prediction performance for a battery's RUL prediction. Firstly, when a new estimator is output by the RVM, the Kalman filter is applied to optimize this estimator with a physical degradation model. Then, this optimized estimator is added into the training set as an on-line sample, the RVM model is re-trained, and the coefficient matrix and relevance vectors can be dynamically adjusted to make next iterative prediction. Experimental results with a commercial battery test data set and a satellite battery data set both indicate that the proposed method can achieve a better performance for RUL estimation. 展开更多
关键词 Iterative updating Kalman filter Lithium-ion battery Relevance vector machine Remaining useful life estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部