期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bamboo-like N-doped carbon nanotubes encapsulating M(Co,Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H_(2) ratios 被引量:2
1
作者 jinxiao bo Mei Li +3 位作者 Xinli Zhu Qingfeng Ge Jinyu Han Hua Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第4期498-510,共13页
The electrochemical conversion of CO_(2)-H_(2)O into CO-H_(2) using renewable energy is a promising technique for clean syngas production.Low-cost electrocatalysts to produce tunable syngas with a potential-independen... The electrochemical conversion of CO_(2)-H_(2)O into CO-H_(2) using renewable energy is a promising technique for clean syngas production.Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H_(2) ratio are highly desired.Herein,a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles(MxNi-NCNT,M=Fe,Co)were successfully fabricated through the co-pyrolysis of melamine and metal precursors.The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization.Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles.Consequently,syngas with a wide range of CO/H_(2) ratios,from 0.5:1 to 3.4:1,can be produced on MxNi-NCNT.More importantly,stable CO/H_(2) ratios of 2:1 and 1.5:1,corresponding to the ratio to produce biofuels by syngas fermentation,could be realized on Co1Ni-NCNT and Co2Ni-NCNT,respectively,over a potential window of-0.8 to-1.2 V versus the reversible hydrogen electrode.Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H_(2) ratio from electrochemical CO_(2) reduction. 展开更多
关键词 electrochemical reduction of CO_(2) SYNGAS N-doped carbon nanotubes encapsulated alloy nanoparticles CO H_(2)ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部