In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of n...In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.展开更多
The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrie...The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrient solutions of different pH (pH 4, pH 4.5, pH 5 and pH 6), respectively. The parameters of root architecture were measured in the day 4, 8 and 12 with the professional WinRHIZO 2007. Compared with the control (pH 6), the treatments significantly decreased the fractal dimension, length, diameter, surface area and volume of roots in day 8 and 12, and they kept decreasing followed the increase of the acidity and treatment time. The growth of lateral roots was more susceptible to acid treatment than taproots. In addition, the acid treatment mainly inhibited the growth of rootlets, significantly decreased the proportion of rootlets that changed the composition of roots, and then simplified the space structure of roots.展开更多
基金The Impact and Response of Antarctic Seas to Climate Change under contract Nos IRASCC 02-01-01 and IRASCC 01-01-02Cthe National Natural Science Foundation of China under contract No.41721005.
文摘In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.
文摘The purpose of this paper is to explore the effects of acid treatment on root morphology and architecture in seedlings of Malus hupehensis var. pingyiensis. The rootstock seedlings were cultured in 1/2 Hoagland nutrient solutions of different pH (pH 4, pH 4.5, pH 5 and pH 6), respectively. The parameters of root architecture were measured in the day 4, 8 and 12 with the professional WinRHIZO 2007. Compared with the control (pH 6), the treatments significantly decreased the fractal dimension, length, diameter, surface area and volume of roots in day 8 and 12, and they kept decreasing followed the increase of the acidity and treatment time. The growth of lateral roots was more susceptible to acid treatment than taproots. In addition, the acid treatment mainly inhibited the growth of rootlets, significantly decreased the proportion of rootlets that changed the composition of roots, and then simplified the space structure of roots.