期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigating the bacterial community and amoebae population in rural domestic wastewater reclamation for irrigation 被引量:2
1
作者 Bingjian Cui jinxue luo +3 位作者 Decai Jin Bo Jin Xuliang Zhuang Zhihui Bai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第8期97-105,共9页
Reclamation of domestic wastewater for agricultural irrigation is viewed as a sustainable option to create an alternative water source and address water scarcity. Free-living amoebae(FLA), which are amphizoic protoz... Reclamation of domestic wastewater for agricultural irrigation is viewed as a sustainable option to create an alternative water source and address water scarcity. Free-living amoebae(FLA), which are amphizoic protozoa, are widely distributed in various environmental sources. The FLA could cause considerable environmental and health risks. However, little information is available on the risk of these protozoa. In this study, we evaluated the feasibility using rural domestic wastewater for agricultural irrigation, and analyzed dynamic changes of the microbial community structure and FLA populations in raw and treated wastewater, as well as the phyllosphere and rhizosphere of lettuce production sites that were irrigated with different water sources. The bacterial community dynamics were analyzed by terminal restriction fragment length polymorphism(T-RFLP). The bacterial community structures in the influent were similar to that in the effluent, while in some cases relative abundances varied significantly. The populations of Acanthamoeba spp. and Hartmannella vermiformis in the anaerobically treated wastewater were significantly higher than in the raw wastewater. The vegetables could harbor diverse amoebae, and the abundances of Acanthamoeba spp. and H. vermiformis in the rhizosphere were significantly higher than in the phyllosphere. Accordingly, our studies show insight into the distribution and dissemination of amoebae in wastewater treatment and irrigation practices. 展开更多
关键词 Rural domestic wastewater AMOEBAE Bacterial community PHYLLOSPHERE RHIZOSPHERE
原文传递
Characterization of the archaeal community fouling a membrane bioreactor 被引量:2
2
作者 jinxue luo Jinsong Zhang +6 位作者 Xiaohui Tan Diane McDougald Guoqiang Zhuang Anthony G.Fane Staffan Kjelleberg Yehuda Cohen Scott A.Rice 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期115-123,共9页
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreact... Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment ofbiofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP. 展开更多
关键词 Biofouling Biofilm formation Biofilm microbial community Archaeal community Membrane bioreactor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部