Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the s...Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the scanning time based on deep learning methods,which is of great significance to enhancing the popularization and availability of MRI[1](https://www.science.org/doi/abs/10.1126/science.adm7168).展开更多
To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation ...To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions.展开更多
Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened...Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened protease-producing bacteria from the South China Sea sediments and analyzed the diversity of their extracellular proteases at the family level through N-terminal amino acid sequencing. Results of the 16 S rRNA gene sequence analysis showed that all screened protease-producing bacteria belonged to the class Gammaproteobacteria and most of them were affiliated with different genera within the orders Alteromonadales and Vibrionales. The Nterminal amino acid sequence analysis for fourteen extracellular proteases from fourteen screened bacterial strains revealed that all these proteases belonged to the M4 family of metalloproteases or the S8 family of serine proteases. This study presents new details on taxa of marine sedimentary protease-producing bacteria and types of their extracellular proteases, which will help to comprehensively understand the process and mechanism of the microbial enzymatic degradation of marine sedimentary organic nitrogen.展开更多
To study the cell proliferation and wound healing activity of polysaccharides from Ganoderma amboinense(GAMPS),the polysaccharide was extracted by water extraction and alcohol precipitation method,and its monosacchari...To study the cell proliferation and wound healing activity of polysaccharides from Ganoderma amboinense(GAMPS),the polysaccharide was extracted by water extraction and alcohol precipitation method,and its monosaccharide composition and molecular weight were analyzed.The effects of different concentrations of GAMPS on the cell proliferation were determined by cell survival rate test,and the wound healing ability of GAMPS to NIH/3T3 cells was detected.The preliminary evaluation of the antioxidant ability of GAMPS was conducted by the oxygen radical absorbance capacity(ORAC).The results showed that the GAMPS was composed of glucose,mannose,and galactose at a molar ratio of 67.62:14.07:7.50,and the weightaverage molecular weights were 5.439×10^(6) and 1.704×10^(5) g/mol by using high-performance gel-permeation chromatography-multiple angle laser scatter(HPGPC-MALS)analysis.GAMPS(0.2μg/μL)showed the strongest proliferation ability to THP-1 cells,with cell survival rate of 178.7%.The wound healing effect of GAMPS(0.1μg/μL)was obvious on NIH/3T3 and 3.75μg/μL of GAMPS showed the strongest total antioxidant ability.All the results indicate that GAMPS promotes cell proliferation,and has cell wound healing effect and strong antioxidant activity.The results provide theoretical foundation for the development and utilization of GAMPS.展开更多
Aluminum nitride(AlN)has attracted a great amount of interest due to the fact that these group III–V semiconductors present direct band gap behavior and are compatible with current micro-electro-mechanical systems.In...Aluminum nitride(AlN)has attracted a great amount of interest due to the fact that these group III–V semiconductors present direct band gap behavior and are compatible with current micro-electro-mechanical systems.In this work,three dimensional(3D)AlN architectures including tubes and helices were constructed by rolling up AlN nanomembranes grown on a silicon-on-insulator wafer via magnetron sputtering.The properties of the AlN membrane were characterized through transmission electron microscopy and X-ray diffraction.The thickness of AlN nanomembranes could be tuned via the RIE thinning method,and thus micro-tubes with different diameters were fabricated.The intrinsic strain in AlN membranes was investigated via micro-Raman spectroscopy,which agrees well with theory prediction.Whispering gallery mode was observed in AlN tubular optical microcavity in photoluminescence spectrum.A postprocess involving atomic layer deposition and R6G immersion were employed on as-fabricated AlN tubes to promote the Q-factor.The AlN tubular micro-resonators could offer a novel design route for Si-based integrated light sources.In addition,the rolled-up technology paves a new way for AlN 3D structure fabrication,which is promising for AlN application in MEMS and photonics fields.展开更多
Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite sol...Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%).展开更多
In this paper,we propose a new method,called the level-collapsing method,to construct branching Latin hypercube designs(BLHDs).The obtained design has a sliced structure in the third part,that is,the part for the shar...In this paper,we propose a new method,called the level-collapsing method,to construct branching Latin hypercube designs(BLHDs).The obtained design has a sliced structure in the third part,that is,the part for the shared factors,which is desirable for the qualitative branching factors.The construction method is easy to implement,and(near)orthogonality can be achieved in the obtained BLHDs.A simulation example is provided to illustrate the effectiveness of the new designs.展开更多
Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this sys...Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this system will cause many problems such as high hygroscopicity,Li+migration,pinholes and so on,which hinder PSC from maintaining high efficiency and stability for long-term.In this work,an effective strategy is demonstrated to improve the performance and stability of PSC by replacing t BP with 12-crown-4.The chelation of 12-crown-4 with Li+not only improves the doping effect of Li-TFSI,but also perfectly solves the problems caused by the Li-TFSI/tBP system.The PSC based on this strategy achieved a champion power conversion efficiency(PCE)over 21%,which is significantly better than the pristine device(19.37%).More importantly,the without encapsulated device based on Li-TFSI/12-crown-4 still maintains 87%of the initial PCE even after 60 days exposure in air,while the pristine device only maintains 22%of the initial PCE under the same aging conditions.This strategy paves a novel way for constructing efficient and stable PSCs.展开更多
This paper sets out to explore the contagion of systemic risk in Chinese commodity futures market based on specific tools of the graph-theory.More precisely,we use minimum spanning trees as a way to identify the most ...This paper sets out to explore the contagion of systemic risk in Chinese commodity futures market based on specific tools of the graph-theory.More precisely,we use minimum spanning trees as a way to identify the most probable path for the transmission of prices shocks.In the sample of 30 kinds of Chinese commodity futures,we construct the MST and obtain the most probable and the shortest path for the transmission of a prices shock.We find that metal futures play an important role in commodity futures market and copper stands at the heart of the system(The core position of the system is very important for the transmission of system risk).And our results also reveal that when the risk occurs,the MST structure becomes smaller,leading to the most effective transmission path of risk becomes shorter.展开更多
Histone H3K79 modifications are essential to regulate chromatin structure and gene transcription,but understanding of the molecular mechanisms is limited.Because H3K79 is at globular domain,short histone peptide canno...Histone H3K79 modifications are essential to regulate chromatin structure and gene transcription,but understanding of the molecular mechanisms is limited.Because H3K79 is at globular domain,short histone peptide cannot mimic H3K79 in chromatin.Instead,reconstituted nucleosome-based chemical tools are ideally used to investigate H3K79 modifications.In consequence,H3K79-modified histone H3 with additional chemical handles are required,but such synthesis is challenging and laborious.Here we report a facile semisynthesis method that enables multifunctional histone H3 readily available.H3K79-containing fragment is short for straight peptide synthesis that was later ligated to recombinant expressed H3 fragments for full-length product in large scale.As a result,nucleosomes with H3K79 modifications as well as photo-reactive group and affinity tag were obtained to investigate potential binding proteins.We believe this method that enhances synthetic accessibility of nucleosome probes will accelerate understanding of the underexplored H3K79 modifications.展开更多
Latin hypercube designs(LHDs)are very popular in designing computer experiments.In addition,orthogonality is a desirable property for LHDs,as it allows the estimates of the main effects in linear models to be uncorrel...Latin hypercube designs(LHDs)are very popular in designing computer experiments.In addition,orthogonality is a desirable property for LHDs,as it allows the estimates of the main effects in linear models to be uncorrelated with each other,and is a stepping stone to the space-filling property for fitting Gaussian process models.Among the available methods for constructing orthogonal Latin hypercube designs(OLHDs),the rotation method is particularly attractive due to its theoretical elegance as well as its contribution to spacefilling properties in low-dimensional projections.This paper proposes a new rotation method for constructing OLHDs and nearly OLHDs with flexible run sizes that cannot be obtained by existing methods.Furthermore,the resulting OLHDs are improved in terms of the maximin distance criterion and the alias matrices and a new kind of orthogonal designs are constructed.Theoretical properties as well as construction algorithms are provided.展开更多
文摘Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the scanning time based on deep learning methods,which is of great significance to enhancing the popularization and availability of MRI[1](https://www.science.org/doi/abs/10.1126/science.adm7168).
基金the Grain,Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province,Henan University of Technology(G0202205)the Key Scientific Research Projects of Colleges and Universities of Henan(23A550012)the Science Foundation of Henan University of Technology(2020BS013)。
文摘To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions.
基金The AoShan Talents Cultivation Program supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2017ASTCP-OS14the National Natural Science Foundation of China under contract Nos 31670063,31670497 and 31870052+1 种基金the Taishan Scholars Program of Shandong Province under contract No.2009TS079the Science and Technology Basic Resources Investigation Program of China under contract No.2017FY100804
文摘Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened protease-producing bacteria from the South China Sea sediments and analyzed the diversity of their extracellular proteases at the family level through N-terminal amino acid sequencing. Results of the 16 S rRNA gene sequence analysis showed that all screened protease-producing bacteria belonged to the class Gammaproteobacteria and most of them were affiliated with different genera within the orders Alteromonadales and Vibrionales. The Nterminal amino acid sequence analysis for fourteen extracellular proteases from fourteen screened bacterial strains revealed that all these proteases belonged to the M4 family of metalloproteases or the S8 family of serine proteases. This study presents new details on taxa of marine sedimentary protease-producing bacteria and types of their extracellular proteases, which will help to comprehensively understand the process and mechanism of the microbial enzymatic degradation of marine sedimentary organic nitrogen.
基金This research was supported by the National Key Research and Development Program of China(2017YFC1601400)Shandong Provincial Key Research and Development Program(2019GHZ022)+1 种基金Taishan Scholar Program of Shandong Province(tsqn201909168)“Double Hundred”Program for Foreign Experts of Shandong Province(WST2017004).
文摘To study the cell proliferation and wound healing activity of polysaccharides from Ganoderma amboinense(GAMPS),the polysaccharide was extracted by water extraction and alcohol precipitation method,and its monosaccharide composition and molecular weight were analyzed.The effects of different concentrations of GAMPS on the cell proliferation were determined by cell survival rate test,and the wound healing ability of GAMPS to NIH/3T3 cells was detected.The preliminary evaluation of the antioxidant ability of GAMPS was conducted by the oxygen radical absorbance capacity(ORAC).The results showed that the GAMPS was composed of glucose,mannose,and galactose at a molar ratio of 67.62:14.07:7.50,and the weightaverage molecular weights were 5.439×10^(6) and 1.704×10^(5) g/mol by using high-performance gel-permeation chromatography-multiple angle laser scatter(HPGPC-MALS)analysis.GAMPS(0.2μg/μL)showed the strongest proliferation ability to THP-1 cells,with cell survival rate of 178.7%.The wound healing effect of GAMPS(0.1μg/μL)was obvious on NIH/3T3 and 3.75μg/μL of GAMPS showed the strongest total antioxidant ability.All the results indicate that GAMPS promotes cell proliferation,and has cell wound healing effect and strong antioxidant activity.The results provide theoretical foundation for the development and utilization of GAMPS.
基金the National Natural Science Foundation of China(Nos.61905270,51961145108)Natural Science Foundation of Shanghai(19ZR1467100)+1 种基金Science and Technology Commission of Shanghai Municipality(17JC1401700)the Program of Shanghai Academic Research Leader(19XD1400600).
文摘Aluminum nitride(AlN)has attracted a great amount of interest due to the fact that these group III–V semiconductors present direct band gap behavior and are compatible with current micro-electro-mechanical systems.In this work,three dimensional(3D)AlN architectures including tubes and helices were constructed by rolling up AlN nanomembranes grown on a silicon-on-insulator wafer via magnetron sputtering.The properties of the AlN membrane were characterized through transmission electron microscopy and X-ray diffraction.The thickness of AlN nanomembranes could be tuned via the RIE thinning method,and thus micro-tubes with different diameters were fabricated.The intrinsic strain in AlN membranes was investigated via micro-Raman spectroscopy,which agrees well with theory prediction.Whispering gallery mode was observed in AlN tubular optical microcavity in photoluminescence spectrum.A postprocess involving atomic layer deposition and R6G immersion were employed on as-fabricated AlN tubes to promote the Q-factor.The AlN tubular micro-resonators could offer a novel design route for Si-based integrated light sources.In addition,the rolled-up technology paves a new way for AlN 3D structure fabrication,which is promising for AlN application in MEMS and photonics fields.
基金the Sichuan Science and Technology Program (2019YJ0162)the National Natural Science Foundation of China (21402023, 51773027)the National Key R@D Program of China (2017YFB0702802) for financial support。
文摘Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%).
基金supported by the National Natural Science Foundation of China (11601367,11771219 and 11771220)National Ten Thousand Talents Program+1 种基金Tianjin Development Program for Innovation and EntrepreneurshipTianjin "131" Talents Program
文摘In this paper,we propose a new method,called the level-collapsing method,to construct branching Latin hypercube designs(BLHDs).The obtained design has a sliced structure in the third part,that is,the part for the shared factors,which is desirable for the qualitative branching factors.The construction method is easy to implement,and(near)orthogonality can be achieved in the obtained BLHDs.A simulation example is provided to illustrate the effectiveness of the new designs.
基金the National Natural Science Foundation of China(22175029 and 62104031)the Sichuan Science and Technology Program(2019YJ0162)+3 种基金the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(KFJJ202109)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Technical Field Funds of 173 Project(2021-JCJQ-JJ-0663)the Fundamental Research Funds for the Central Universities of China(ZYGX2021J010 and Y030202059018023)for financial support。
文摘Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping system for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this system will cause many problems such as high hygroscopicity,Li+migration,pinholes and so on,which hinder PSC from maintaining high efficiency and stability for long-term.In this work,an effective strategy is demonstrated to improve the performance and stability of PSC by replacing t BP with 12-crown-4.The chelation of 12-crown-4 with Li+not only improves the doping effect of Li-TFSI,but also perfectly solves the problems caused by the Li-TFSI/tBP system.The PSC based on this strategy achieved a champion power conversion efficiency(PCE)over 21%,which is significantly better than the pristine device(19.37%).More importantly,the without encapsulated device based on Li-TFSI/12-crown-4 still maintains 87%of the initial PCE even after 60 days exposure in air,while the pristine device only maintains 22%of the initial PCE under the same aging conditions.This strategy paves a novel way for constructing efficient and stable PSCs.
文摘This paper sets out to explore the contagion of systemic risk in Chinese commodity futures market based on specific tools of the graph-theory.More precisely,we use minimum spanning trees as a way to identify the most probable path for the transmission of prices shocks.In the sample of 30 kinds of Chinese commodity futures,we construct the MST and obtain the most probable and the shortest path for the transmission of a prices shock.We find that metal futures play an important role in commodity futures market and copper stands at the heart of the system(The core position of the system is very important for the transmission of system risk).And our results also reveal that when the risk occurs,the MST structure becomes smaller,leading to the most effective transmission path of risk becomes shorter.
基金support from National Natural Science Foundation of China(Nos.22077103 and 22161132006)Westlake University startup。
文摘Histone H3K79 modifications are essential to regulate chromatin structure and gene transcription,but understanding of the molecular mechanisms is limited.Because H3K79 is at globular domain,short histone peptide cannot mimic H3K79 in chromatin.Instead,reconstituted nucleosome-based chemical tools are ideally used to investigate H3K79 modifications.In consequence,H3K79-modified histone H3 with additional chemical handles are required,but such synthesis is challenging and laborious.Here we report a facile semisynthesis method that enables multifunctional histone H3 readily available.H3K79-containing fragment is short for straight peptide synthesis that was later ligated to recombinant expressed H3 fragments for full-length product in large scale.As a result,nucleosomes with H3K79 modifications as well as photo-reactive group and affinity tag were obtained to investigate potential binding proteins.We believe this method that enhances synthetic accessibility of nucleosome probes will accelerate understanding of the underexplored H3K79 modifications.
基金supported by National Natural Science Foundation of China(Grant Nos.12131001 and 11871288)National Ten Thousand Talents Program and the 111 Project B20016。
文摘Latin hypercube designs(LHDs)are very popular in designing computer experiments.In addition,orthogonality is a desirable property for LHDs,as it allows the estimates of the main effects in linear models to be uncorrelated with each other,and is a stepping stone to the space-filling property for fitting Gaussian process models.Among the available methods for constructing orthogonal Latin hypercube designs(OLHDs),the rotation method is particularly attractive due to its theoretical elegance as well as its contribution to spacefilling properties in low-dimensional projections.This paper proposes a new rotation method for constructing OLHDs and nearly OLHDs with flexible run sizes that cannot be obtained by existing methods.Furthermore,the resulting OLHDs are improved in terms of the maximin distance criterion and the alias matrices and a new kind of orthogonal designs are constructed.Theoretical properties as well as construction algorithms are provided.