Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.Ho...Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology.展开更多
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ...Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease.展开更多
A honeycomb structure is widely used in sandwich structure components in aeronautics and astronautics;however,machining is required to reveal some of its features.In honeycomb structures,deficiencies,such as burrs,edg...A honeycomb structure is widely used in sandwich structure components in aeronautics and astronautics;however,machining is required to reveal some of its features.In honeycomb structures,deficiencies,such as burrs,edge subsiding,and cracking,can easily appear,owing to poor specific sti ness in the radial direction.Some e ective fixation methods based on a filling principle have been applied by researchers,including approaches based on wax,polyethylene glycol,iron powder,and(especially)ice.However,few studies have addressed the optimization of the cutting parameters.This study focused on optimizing the cutting parameters to obtain a better surface roughness(calculated as a roughness average or Ra)and surface morphology in the machining of an aluminum alloy honeycomb by an ice fixation method.A Taguchi method and an analysis of variance were used to analyze the e ects and contributions of spindle speed,cutting depth,and feed rate.The optimal cutting parameters were determined using the signal-to-noise ratio combined with the surface morphology.An F-value and P-value were calculated for the value of the Ra,according to a"smaller is better"model.Additionally,the optimum cutting parameters for machining the aluminum honeycomb by ice fixation were found at different levels.The results of this study showed that the optimal parameters were a feed rate of 50 mm/min,cutting depth of 1.2 mm,and spindle speed of 4000 r/min.Feed rate was the most significant factor for minimizing Ra and improving the surface morphology,followed by spindle speed.The cutting depth had little e ect on Ra and surface morphology.After optimization,the value of Ra could reach 0.218μm,and no surface morphology deterioration was observed in the verified experiment.Thus,this research proposes optimal parameters based on ice fixation for improving the surface quality.展开更多
Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However,...Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells(BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1(CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein(BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.展开更多
Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The ex...Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.展开更多
To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divide...To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divided into four experimental groups: experimental group 1 (protein 15%, metabolic energy 9.95 MJ/kg), experimental group 2 (protein 16%, metabolic energy 10.95 MJ/kg), experimental group 3 (protein 17%, metabolic energy 12.65 MJ/kg) and experimental group 4 ( protein 18%, metabolic energy 13.95 MJ/kg), respectively. All chickens were slaughtered at 112-day old. The breast and leg muscles of Jinghai yellow chickens were collected, to determine the slaughter performance, conventional meat quality and muscle chemical indicators. The results indicated that dressing-out percentage and eviscerated yield percentage in four experimental groups were above 87.27% and 67.00%, respectively; other slaughter performance indicators exhibited no significant differences among various groups (P 〉 0.05 ) ; breast muscle color of hens in experimental group 4 varied significantly from that in other three groups ( P 〈 0.05 ) ; leg muscle color of hens in experimental group 2 varied extremely significantly from that in other three groups ( P 〈 0.01 ) ; water-holding capacity of breast muscles of hens in experimental group 3 was significantly higher than that in experimental group 4 (P 〈 0.05 ) ; thiamine content of breast muscles of cocks in experimental group 3 was significandy higher than that in experimental group 2 ( P 〈 0.05 ) ; however, other properties exhibited no significant differenees among various groups (P 〉 0.05 ).展开更多
The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented ...The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented and virtual reality.However,due to the hardware constrains of a sectored multiprobe anechoic chamber(SMPAC),switching among multiple channel models is of low precision with a high cost in traditional over-the-air(OTA)test solutions.In this paper,we present an efficient and repeatable emulation strategy to reconstruct dynamic millimeter-wave(mm Wave)channels in laboratories for multiple-input multiple-output(MIMO)mobile devices.Firstly,we propose a novel evaluation metric,called average power angular spectrum similarity percentage(APSP),which minimizes the unexpected impact induced by the indefinite condition of adaptive antenna arrays in mm Wave terminals during handover process.Moreover,we propose a partitioned probe configuration strategy by designing a beam directivitybased switching circuit,which enables quick changes of probe configurations in SMPAC.Simulation results demonstrate the effectiveness of the proposed algorithms,thus providing a guideline for the reconstruction of the dynamic channel in different scenarios with resource limitation.展开更多
In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in ...In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.展开更多
This paper introduces the design and Realization of NC simulation teaching system based on VB and VRML technology. The paper realize functions using the new Parallel development platform launched by Graphics Company f...This paper introduces the design and Realization of NC simulation teaching system based on VB and VRML technology. The paper realize functions using the new Parallel development platform launched by Graphics Company for VRML environment (Cortona SDK), and uses the object oriented programming method based on ActiveX technology in the technical system. Practice has proved that the system has good stability and strong simulation function.展开更多
For the detection environment of complex walls such as high-rise buildings,a double helix wall climbing robot(DHWCR)with strong adsorption force and good stability is designed and developed,which uses symmetrical prop...For the detection environment of complex walls such as high-rise buildings,a double helix wall climbing robot(DHWCR)with strong adsorption force and good stability is designed and developed,which uses symmetrical propellers to provide adsorption force.The symmetrical driving structure can provide smooth thrust for the DHWCR,so that the robot can be absorbed to the wall surface with different roughness.A left and right control frame with multiple degrees of freedom is designed,which can adjust the fixed position of the brushless propeller motor in the front and back directions,realize the continuous adjustable thrust direction of the robot,and improve the flexibility of the robot movement.Using the front wheel steering mechanism with universal joint,the steering control of the DHWCR is realized by differential control.In the vertical to ground transition,the front and rear brushless motors can provide the pull up and oblique thrust,so that the DHWCR can smoothly transition to the vertical wall.The motion performance and adaptability of the DHWCR in the horizontal ground and vertical wall environment are tested.The results show that the DHWCR can switch motion between the horizontal ground and vertical wall,and can stably adsorb on the vertical wall with flexible attitude control.The DHWCR can move at a fast speed.The speed on the horizontal ground is higher than that on the vertical wall,which verifies the feasibility and reliability of the DHWCR moving stably on the vertical wall.展开更多
Salt-processed Alismatis Rhizoma(SAR)is extensively used in clinical practice and exhibits a more robust urination-promoting effect than Alismatis Rhizoma(AR).This study employed ultra-performance liquid chromatograph...Salt-processed Alismatis Rhizoma(SAR)is extensively used in clinical practice and exhibits a more robust urination-promoting effect than Alismatis Rhizoma(AR).This study employed ultra-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS)and pattern analysis to compare the terpenoids between AR and SAR.Additionally,this study compared the effects of AR and SAR on the gene expression in the kidneys of the rat model of edema(syndrome of kidney Yin deficiency)by transcriptomics to decipher the mechanism of salt processing.Materials and methods:AR and SAR were extracted by ultrasonication,and data were collected by UPLC-Q-TOF-MS in the positive ionmode.Transcriptome sequencing was employed to determine the gene expression levels of the ratmodel treated with AR and SAR,and the differentially expressed genes(DEGs)were obtained.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment was performed for the DEGs.The protein-protein interaction(PPI)network was built,on the basis of which the core targets were screened out.Finally,real-time quantitative polymerase chain reaction(RT-PCR)was conducted to verify the core targets.Results:A total of 63 terpenoids were detected in AR and SAR,and salt processing had a significant effect on the content of terpenoids.AR and SAR mainly participated in the regulation of inflammation and immune responses,and SAR regulated more DEGs than AR.Additionally,SAR exerted more extensive regulatory effects on the targets than AR.Conclusion:Salt processing mainly changes the content of chemical compounds in AR,which may indirectly optimize the proportion of the main compounds to enhance the therapeutic effect while reducing the toxicity.AR and SAR mainly ameliorate the edema due to kidney Yin deficiency by reducing inflammation and improving immunity.Finally,SAR regulates more genes and signaling pathways and exerts more extensive regulatory effects than AR.展开更多
Chip seal is widely used for preventive maintenance to mitigate pavement deterioration,but it is prone to aggregate loss during pavement service.To further promote the development and application of chip seals in road...Chip seal is widely used for preventive maintenance to mitigate pavement deterioration,but it is prone to aggregate loss during pavement service.To further promote the development and application of chip seals in road engineering in China,the research progress of the adhesion behavior of aggregate and binder in chip seals was reviewed in this paper,focusing on the adhesion mechanism of emulsified asphalt and alkaline aggregate.The Influencing factors and evaluation methodology of chip seals'aggregate adhesion behavior were also discussed.The results demonstrate that the adhesion process between emulsified asphalt and alkaline aggregate is divided into three processes including infiltration,demulsification,and cluster,which is more complicated when compared to hot asphalt.When designing a chip seal,not only the characteristics of single material should be paid attention to,but also the combination of binder and aggregate matters a lot.To form good adhesion between aggregate and asphalt binder,various influencing factors such as material selection,design method,and construction technical index should be considered comprehensively in the whole design,construction,and operation process.Three methods for evaluating adhesion behavior are summarized,including macroscopic adhesion performance tests,image analysis technology,and model prediction.It is not objective to evaluate the aggregate adhesion behavior of chip seal only by a single evaluation method.A comprehensive evaluation based on the micro-macro multi-scale method should be considered in the future.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-...In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.展开更多
Identifying mechanisms and pathways involved in gene–environment interplay and phenotypic plasticity is a long-standing challenge.It is highly desirable to establish an integrated framework with an environmental dime...Identifying mechanisms and pathways involved in gene–environment interplay and phenotypic plasticity is a long-standing challenge.It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction.A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments.With extensive field-observed complex traits,environmental profiles,and genome-wide single nucleotide polymorphisms for three major crops(maize,wheat,and oat),we demonstrated that identifying such an environmental index(i.e.,a combination of environmental parameter and growth window)enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension.Interestingly,genes identified for two reaction-norm parameters(i.e.,intercept and slope)derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels,agreeing with the different diversity levels and genetic constitutions of the panels.In addition,we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments.This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits,enhanced performance prediction in breeding for future climates,and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.展开更多
This paper investigated the recovery of rare earth elements(REEs) and aluminum(AI) from the waste slag discharged by FCC catalyst factory(FCC waste slag) via acid leaching and selective precipitation.Analysis methods ...This paper investigated the recovery of rare earth elements(REEs) and aluminum(AI) from the waste slag discharged by FCC catalyst factory(FCC waste slag) via acid leaching and selective precipitation.Analysis methods such as ICP-AES, XRF and XRD were applied to obtain experiment data. The maximum leaching efficiency of REEs and Al was achieved at pH value of 1 and with liquid to solid ratio of 4:1,Under such conditions, 91.01%, 92.24% and 94.77% of La, Ce and Al were extracted at 20 ℃ for 2 h from the FCC waste slag, respectively. The SiOcontent in the leaching residue was 88.3%, which can be used as an available silicon resource. The REEs can be precipitated in the form of REEs and sodium double sulfate(NaRE(SO)·xHO) by adding NaSOto the leaching solution, while Al remained in the solution. Afterwards, the pH value of the filtrate was adjusted to 4.5, and Al was precipitated as AI(OH). Finally,NaRE(SO)·xHO and Al(OH)were converted into RECland Al(SO4)solution,respectively, which were recycled to manufacture zeolite. This process recovered REEs and Al from the FCC waste slag and reduced the emissions of waste slag simultaneously, which has an important economic and environment significance.展开更多
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China[Grant No.52222708]the Natural Science Foundation of Beijing Municipality[Grant No.3212033]。
文摘Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology.
基金Bethune Medical Engineering and Instrument Center Fund(E10133Y8H0)Jilin province science and technology development plan project(20210204216YY,20210204146YY).
文摘Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease.
基金Supported by National Key Research and Development Program of China(Grant No.2019YFB2005400)National Natural Science Foundation of China(Grant No.U1608251)+1 种基金Open project of State Key Laboratory of high performance complex manufacturing(Grant No.Kfkt2016-05)Changjiang Scholar Program of Chinese Ministry of Education(Grant No.T2017030).
文摘A honeycomb structure is widely used in sandwich structure components in aeronautics and astronautics;however,machining is required to reveal some of its features.In honeycomb structures,deficiencies,such as burrs,edge subsiding,and cracking,can easily appear,owing to poor specific sti ness in the radial direction.Some e ective fixation methods based on a filling principle have been applied by researchers,including approaches based on wax,polyethylene glycol,iron powder,and(especially)ice.However,few studies have addressed the optimization of the cutting parameters.This study focused on optimizing the cutting parameters to obtain a better surface roughness(calculated as a roughness average or Ra)and surface morphology in the machining of an aluminum alloy honeycomb by an ice fixation method.A Taguchi method and an analysis of variance were used to analyze the e ects and contributions of spindle speed,cutting depth,and feed rate.The optimal cutting parameters were determined using the signal-to-noise ratio combined with the surface morphology.An F-value and P-value were calculated for the value of the Ra,according to a"smaller is better"model.Additionally,the optimum cutting parameters for machining the aluminum honeycomb by ice fixation were found at different levels.The results of this study showed that the optimal parameters were a feed rate of 50 mm/min,cutting depth of 1.2 mm,and spindle speed of 4000 r/min.Feed rate was the most significant factor for minimizing Ra and improving the surface morphology,followed by spindle speed.The cutting depth had little e ect on Ra and surface morphology.After optimization,the value of Ra could reach 0.218μm,and no surface morphology deterioration was observed in the verified experiment.Thus,this research proposes optimal parameters based on ice fixation for improving the surface quality.
基金funded by the National Key Research and Development Program of China(2021YFC2400404,to L.C.)the Key Program of National Natural Science of China(82030070,to L.C.)+1 种基金the National Science Foundation for Excellent Young Scholars of China(31725011,to L.C.)the Youth Clinical Research Fund of Chinese Stomatological Association(CSA-O2020-10,to Q.T.)。
文摘Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells(BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1(CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein(BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.
基金supports from National Key R&D Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012).
文摘Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.
基金Supported by Special Fund for National Broiler Industry Technology System ofChina(CARS-42-G23)Project of Priority Academic Program Development ofJiangsu Higher Education Institutionsthe New Century Talent Project of Yangzhou University
文摘To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divided into four experimental groups: experimental group 1 (protein 15%, metabolic energy 9.95 MJ/kg), experimental group 2 (protein 16%, metabolic energy 10.95 MJ/kg), experimental group 3 (protein 17%, metabolic energy 12.65 MJ/kg) and experimental group 4 ( protein 18%, metabolic energy 13.95 MJ/kg), respectively. All chickens were slaughtered at 112-day old. The breast and leg muscles of Jinghai yellow chickens were collected, to determine the slaughter performance, conventional meat quality and muscle chemical indicators. The results indicated that dressing-out percentage and eviscerated yield percentage in four experimental groups were above 87.27% and 67.00%, respectively; other slaughter performance indicators exhibited no significant differences among various groups (P 〉 0.05 ) ; breast muscle color of hens in experimental group 4 varied significantly from that in other three groups ( P 〈 0.05 ) ; leg muscle color of hens in experimental group 2 varied extremely significantly from that in other three groups ( P 〈 0.01 ) ; water-holding capacity of breast muscles of hens in experimental group 3 was significantly higher than that in experimental group 4 (P 〈 0.05 ) ; thiamine content of breast muscles of cocks in experimental group 3 was significandy higher than that in experimental group 2 ( P 〈 0.05 ) ; however, other properties exhibited no significant differenees among various groups (P 〉 0.05 ).
基金supported by the National Natural Science Foundation of China(NSFC)under grant U21A20448。
文摘The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented and virtual reality.However,due to the hardware constrains of a sectored multiprobe anechoic chamber(SMPAC),switching among multiple channel models is of low precision with a high cost in traditional over-the-air(OTA)test solutions.In this paper,we present an efficient and repeatable emulation strategy to reconstruct dynamic millimeter-wave(mm Wave)channels in laboratories for multiple-input multiple-output(MIMO)mobile devices.Firstly,we propose a novel evaluation metric,called average power angular spectrum similarity percentage(APSP),which minimizes the unexpected impact induced by the indefinite condition of adaptive antenna arrays in mm Wave terminals during handover process.Moreover,we propose a partitioned probe configuration strategy by designing a beam directivitybased switching circuit,which enables quick changes of probe configurations in SMPAC.Simulation results demonstrate the effectiveness of the proposed algorithms,thus providing a guideline for the reconstruction of the dynamic channel in different scenarios with resource limitation.
文摘In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.
文摘This paper introduces the design and Realization of NC simulation teaching system based on VB and VRML technology. The paper realize functions using the new Parallel development platform launched by Graphics Company for VRML environment (Cortona SDK), and uses the object oriented programming method based on ActiveX technology in the technical system. Practice has proved that the system has good stability and strong simulation function.
基金supported by the Key Research Development and Promotion Special Project of Henan Province,under Grant 212102310119 and 212102210358Scientific Research Foundation for High-level Talents of Henan Institute of Technology,under Grant KQ1869+7 种基金2021 Provincial Higher Education Teaching Reform General Project"Research and Practice of Grassroots Teaching Management Construction in Local Application-oriented Universities under the Background of Professional Certification",under Grant SJGY20210520University-Industry Collaborative Education Program,under Grant 202101187010 and 202102120046Innovation and Entrepreneurship Training Program for College Students of Henan Province,under Grant 202211329011Educational and Teaching Reform Research and Practice Project of Henan Institute of Technology,under Grant 2021-YB023 and JJXY-2021005Innovative Education Curriculum Construction Project of Henan Institute of Technology,under Grant CX-2021-0052022 Xinxiang Federation of Social Sciences Research topic,under Grant SKL-2022-254 and SKL-2022-2282022 Annual Research Topic of Henan Federation of Social Sciences,under Grant SKL-2022-26922022 Annual Research Project of Henan Federation of Social Sciences:"Research on Rural Revitalization Strategy of Financial Service Model Innovation in Henan Province",under Grant SKL-2022-2692.
文摘For the detection environment of complex walls such as high-rise buildings,a double helix wall climbing robot(DHWCR)with strong adsorption force and good stability is designed and developed,which uses symmetrical propellers to provide adsorption force.The symmetrical driving structure can provide smooth thrust for the DHWCR,so that the robot can be absorbed to the wall surface with different roughness.A left and right control frame with multiple degrees of freedom is designed,which can adjust the fixed position of the brushless propeller motor in the front and back directions,realize the continuous adjustable thrust direction of the robot,and improve the flexibility of the robot movement.Using the front wheel steering mechanism with universal joint,the steering control of the DHWCR is realized by differential control.In the vertical to ground transition,the front and rear brushless motors can provide the pull up and oblique thrust,so that the DHWCR can smoothly transition to the vertical wall.The motion performance and adaptability of the DHWCR in the horizontal ground and vertical wall environment are tested.The results show that the DHWCR can switch motion between the horizontal ground and vertical wall,and can stably adsorb on the vertical wall with flexible attitude control.The DHWCR can move at a fast speed.The speed on the horizontal ground is higher than that on the vertical wall,which verifies the feasibility and reliability of the DHWCR moving stably on the vertical wall.
基金funded by the National Natural Science Foundation of China(Grant No.82003951).
文摘Salt-processed Alismatis Rhizoma(SAR)is extensively used in clinical practice and exhibits a more robust urination-promoting effect than Alismatis Rhizoma(AR).This study employed ultra-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS)and pattern analysis to compare the terpenoids between AR and SAR.Additionally,this study compared the effects of AR and SAR on the gene expression in the kidneys of the rat model of edema(syndrome of kidney Yin deficiency)by transcriptomics to decipher the mechanism of salt processing.Materials and methods:AR and SAR were extracted by ultrasonication,and data were collected by UPLC-Q-TOF-MS in the positive ionmode.Transcriptome sequencing was employed to determine the gene expression levels of the ratmodel treated with AR and SAR,and the differentially expressed genes(DEGs)were obtained.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment was performed for the DEGs.The protein-protein interaction(PPI)network was built,on the basis of which the core targets were screened out.Finally,real-time quantitative polymerase chain reaction(RT-PCR)was conducted to verify the core targets.Results:A total of 63 terpenoids were detected in AR and SAR,and salt processing had a significant effect on the content of terpenoids.AR and SAR mainly participated in the regulation of inflammation and immune responses,and SAR regulated more DEGs than AR.Additionally,SAR exerted more extensive regulatory effects on the targets than AR.Conclusion:Salt processing mainly changes the content of chemical compounds in AR,which may indirectly optimize the proportion of the main compounds to enhance the therapeutic effect while reducing the toxicity.AR and SAR mainly ameliorate the edema due to kidney Yin deficiency by reducing inflammation and improving immunity.Finally,SAR regulates more genes and signaling pathways and exerts more extensive regulatory effects than AR.
基金supported by National Natural Science Foundation of China(No.52108396)Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science and Technology)(No.kfj210301)。
文摘Chip seal is widely used for preventive maintenance to mitigate pavement deterioration,but it is prone to aggregate loss during pavement service.To further promote the development and application of chip seals in road engineering in China,the research progress of the adhesion behavior of aggregate and binder in chip seals was reviewed in this paper,focusing on the adhesion mechanism of emulsified asphalt and alkaline aggregate.The Influencing factors and evaluation methodology of chip seals'aggregate adhesion behavior were also discussed.The results demonstrate that the adhesion process between emulsified asphalt and alkaline aggregate is divided into three processes including infiltration,demulsification,and cluster,which is more complicated when compared to hot asphalt.When designing a chip seal,not only the characteristics of single material should be paid attention to,but also the combination of binder and aggregate matters a lot.To form good adhesion between aggregate and asphalt binder,various influencing factors such as material selection,design method,and construction technical index should be considered comprehensively in the whole design,construction,and operation process.Three methods for evaluating adhesion behavior are summarized,including macroscopic adhesion performance tests,image analysis technology,and model prediction.It is not objective to evaluate the aggregate adhesion behavior of chip seal only by a single evaluation method.A comprehensive evaluation based on the micro-macro multi-scale method should be considered in the future.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.
基金supported by the Agriculture and Food Research Initiative competitive grant(2021-67013-33833)the USDA National Institute of Food and Agriculture,the Advanced Research Projects Agency-Energy program(DEAR0000826)+1 种基金the Department of Energy,the National Science Foundation(IOS-1546657)the Iowa State University Ray-mond F.Baker Center for Plant Breeding,and the Iowa State University Plant Sciences Institute.
文摘Identifying mechanisms and pathways involved in gene–environment interplay and phenotypic plasticity is a long-standing challenge.It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction.A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments.With extensive field-observed complex traits,environmental profiles,and genome-wide single nucleotide polymorphisms for three major crops(maize,wheat,and oat),we demonstrated that identifying such an environmental index(i.e.,a combination of environmental parameter and growth window)enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension.Interestingly,genes identified for two reaction-norm parameters(i.e.,intercept and slope)derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels,agreeing with the different diversity levels and genetic constitutions of the panels.In addition,we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments.This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits,enhanced performance prediction in breeding for future climates,and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.
基金Project supported by the Rare-earth Adjustment Upgrade Projects of Ministry of Industry and Information Technology of ChinaBeijing Nova Program(Z161100004916108)
文摘This paper investigated the recovery of rare earth elements(REEs) and aluminum(AI) from the waste slag discharged by FCC catalyst factory(FCC waste slag) via acid leaching and selective precipitation.Analysis methods such as ICP-AES, XRF and XRD were applied to obtain experiment data. The maximum leaching efficiency of REEs and Al was achieved at pH value of 1 and with liquid to solid ratio of 4:1,Under such conditions, 91.01%, 92.24% and 94.77% of La, Ce and Al were extracted at 20 ℃ for 2 h from the FCC waste slag, respectively. The SiOcontent in the leaching residue was 88.3%, which can be used as an available silicon resource. The REEs can be precipitated in the form of REEs and sodium double sulfate(NaRE(SO)·xHO) by adding NaSOto the leaching solution, while Al remained in the solution. Afterwards, the pH value of the filtrate was adjusted to 4.5, and Al was precipitated as AI(OH). Finally,NaRE(SO)·xHO and Al(OH)were converted into RECland Al(SO4)solution,respectively, which were recycled to manufacture zeolite. This process recovered REEs and Al from the FCC waste slag and reduced the emissions of waste slag simultaneously, which has an important economic and environment significance.