Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional re...Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.展开更多
Atmosphere-Breathing Electric Propulsion(ABEP)can compensate for lost momentum of spacecraft operating in Very Low Earth Orbit(VLEO)which has been widely concerned due to its excellent commercial potential.It is a key...Atmosphere-Breathing Electric Propulsion(ABEP)can compensate for lost momentum of spacecraft operating in Very Low Earth Orbit(VLEO)which has been widely concerned due to its excellent commercial potential.It is a key technology to improve the capture efficiency of intakes,which collect and compress the atmosphere for ABEP.In this paper,the mechanism of the capture section affecting capture efficiency is investigated by Test Particle Monte Carlo(TPMC)simulations with 3D intake models.The inner surface smoothness and average collision number are determined to be key factors affecting capture efficiency,and a negative effect growth model is accordingly established.When the inner surface smoothness is less than 0.2,the highest capture efficiency and its corresponding average collision number interval are independent of the capture section’s geometry and its mesh size.When the inner surface smoothness is higher than 0.2,the capture efficiency will decrease by installing any capture section.Based on the present results,the manufacturing process and material selection are suggested to be prioritized during the intake geometry design in engineering projects.Then,the highest capture efficiency can be achieved by adjusting the length and mesh size of the capture section.展开更多
Mitochondria energize the inner ear to maintain the cochlear potential createdbythe striavascularis,assist the motility of outer hair cells,perform synaptic processes,and maintain the spontaneous and sound-driven disc...Mitochondria energize the inner ear to maintain the cochlear potential createdbythe striavascularis,assist the motility of outer hair cells,perform synaptic processes,and maintain the spontaneous and sound-driven discharges of the spiral ganglion neurons(SGNs).Mitophagy deficiencies induce the accumulation of damaged organelles and mitochondria in cells and are a primary cause of drug-induced hearing loss.展开更多
基金the financial support from National Natural Science Foundation of China(No.51906211)the China Postdoctoral Science Foundation(No.2019M662048)+1 种基金the Key R&D Program of Zhejiang Province(No.2019C01044)the Zhejiang Provincial Natural Science Foundation of China(No.LR17E060002)。
文摘Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications.Graphene has the diamond comparable thermal conductivity,while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications.One strategy to overcome this is to use three-dimensional(3D)architecture of graphene.Herein,3D graphene structure with covalent-bonding nanofins(3D-GS-CBF)is proposed,which is then used as the filler to demonstrate effective aqueous medium.The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF(0.26 vol%)aqueous medium can be as high as 2.61 W m-1 K-1 and 1300%,respectively,around six times larger than highest value of the existed aqueous mediums.Meanwhile,3D-GS-CBF can be stable in the solution even after 6 months,addressing the instability issues of conventional graphene networks.A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results.3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate(by 1.5 times)that are even comparable to the interfacial heating system;meanwhile,its cooling performance is also superior to commercial coolant in thermal management applications.
基金the auspices of National Key R&D Program of China(No.2020YFC2201100)the National Natural Science Foundation of China(No.52077169)+1 种基金the State Key Laboratory of Electrical Insulation and Power Equipment,China(No.EIPE22116)HPC Platform,Xi’an Jiaotong University,China。
文摘Atmosphere-Breathing Electric Propulsion(ABEP)can compensate for lost momentum of spacecraft operating in Very Low Earth Orbit(VLEO)which has been widely concerned due to its excellent commercial potential.It is a key technology to improve the capture efficiency of intakes,which collect and compress the atmosphere for ABEP.In this paper,the mechanism of the capture section affecting capture efficiency is investigated by Test Particle Monte Carlo(TPMC)simulations with 3D intake models.The inner surface smoothness and average collision number are determined to be key factors affecting capture efficiency,and a negative effect growth model is accordingly established.When the inner surface smoothness is less than 0.2,the highest capture efficiency and its corresponding average collision number interval are independent of the capture section’s geometry and its mesh size.When the inner surface smoothness is higher than 0.2,the capture efficiency will decrease by installing any capture section.Based on the present results,the manufacturing process and material selection are suggested to be prioritized during the intake geometry design in engineering projects.Then,the highest capture efficiency can be achieved by adjusting the length and mesh size of the capture section.
基金supported by grants from the National Natural Science Foundation of China(No.82171158,82271177,82271185,82171155)the National Key Research and Development,Project of China(No.2020YFC2008500).
文摘Mitochondria energize the inner ear to maintain the cochlear potential createdbythe striavascularis,assist the motility of outer hair cells,perform synaptic processes,and maintain the spontaneous and sound-driven discharges of the spiral ganglion neurons(SGNs).Mitophagy deficiencies induce the accumulation of damaged organelles and mitochondria in cells and are a primary cause of drug-induced hearing loss.