期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A portable instrument for measurement of atmospheric O_(x) and NO_(2) based on cavity ring-down spectroscopy 被引量:1
1
作者 jinzhao tong Renzhi Hu +5 位作者 Changjin Hu Haotian Cai Chuan Lin Jiawei Wang Liang Chen Pinhua Xie 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第6期21-25,共5页
Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for ev... Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution. 展开更多
关键词 Cavity ring-down OXIDANT OZONE Portable measurement
下载PDF
Nocturnal atmospheric chemistry of NO_(3) and N_(2)O_(5) over Changzhou in the Yangtze River Delta in China 被引量:1
2
作者 Chuan Lin Renzhi Hu +5 位作者 Pinhua Xie Shengrong Lou Guoxian Zhang jinzhao tong Jianguo Liu Wenqing Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期376-390,共15页
Comprehensive observations of the nocturnal atmospheric oxidation of NO_(3)and N_(2)O_(5)were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy(CRDS)from 27 May to 24 June,2019.H... Comprehensive observations of the nocturnal atmospheric oxidation of NO_(3)and N_(2)O_(5)were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy(CRDS)from 27 May to 24 June,2019.High concentrations of NO_(3)precursors were observed,and the nocturnal production rate of NO_(3)was determined to be 1.7±1.2 ppbv/hr.However,the nighttime NO_(3)and N_(2)O_(5)concentrations were relatively low,with maximum values of 17.7 and 304.7 pptv,respectively,illustrating the rapid loss ofNO_(3)andN_(2)O_(5).Itwas found that NO_(3)dominated the nighttime atmospheric oxidation,accounting for 50.7%,whileO3 andOH only contributed 34.1%and 15.2%,respectively.For the reactions of NO_(3)with volatile organic compounds(VOCs),styrenewas found to account for 60.3%,highlighting its dominant role in the NO_(3)reactivity.In general,the contributions of the reactions between NO_(3)and VOCs and the N_(2)O_(5)uptake to NO_(3)losswere found to be about 39.5%and 60.5%,respectively,indicating that N_(2)O_(5)uptake also played an important role in the loss of NO_(3)and N_(2)O_(5),especially under the high humidity conditions in China.The formation of nitrate at night mainly originated from N_(2)O_(5)uptake,and the maximum production rate of NO_(3)^(-)reached 6.5 ppbv/hr.The average NOx consumption rate via NO_(3)and N_(2)O_(5)chemistry was found to be 0.4 ppbv/h,accounting for 47.9%of the total NO_(x)removal.The predominant roles of NO_(3)and N_(2)O_(5)in nitrate formation and NO_(x)removal in the YRD region was highlighted in this study. 展开更多
关键词 Nitrate radical(NO_(3)) Dinitrogen pentoxide(N_(2)O_(5)) Cavity ring-down spectroscopy(CRDS) Styrene N_(2)O_(5)uptake Nighttime chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部