期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of the Relation between Rolling Contact Fatigue Property and Microstructure on the Surface Layer of D2 Wheel Steel 被引量:3
1
作者 Shuaishuai Wang Xiujuan Zhao +3 位作者 Pengtao Liu jinzhi pan Chunhuan Chen Ruiming Ren 《Materials Sciences and Applications》 2019年第8期509-526,共18页
Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel st... Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel steel. The results showed that although the roughness of the original specimen induced by mechanical processing would diminish to some extent in the experiment, the 0.5 - 1.5 μm thick layer of ultrafine microstructure on the original mechanically-processed specimen surface would still become micro-cracks and small spalling pits due to spalling, and would further evolve into fatigue crack source. Additionally, even under the impact of the load that was not adequate to make the material reach fatigue limit, the ferrite in the microstructure underwent plastic deformation, which led the refinement of proeutectoid ferrite grains. During the experiment, the hardening and the refinement caused by plastic deformation consisted with the theory that dislocation gave rise to plastic deformation and grain refinement. The distribution laws of hardness and ferrite grain sizes measured could be explained by the distribution law of the shearing stress in the subsurface. 展开更多
关键词 D2 Wheel Steel ROLLING CONTACT FATIGUE Property MICROSTRUCTURE Evolution of the Surface Layer The Formation and Propagation of CONTACT FATIGUE Cracks
下载PDF
Effect of Sliding Wear on Surface Microstructure and Wear Property of D2 Wheel Steel
2
作者 Chunpeng Liu Xiujuan Zhao +2 位作者 Pengtao Liu jinzhi pan Ruiming Ren 《Materials Sciences and Applications》 2019年第9期600-613,共14页
In this paper, the surface microstructure and wear property of D2 wheel steel under sliding wear condition were studied by MRH-30 sliding wear tester. After testing, a transmission electron microscope (TEM), scanning ... In this paper, the surface microstructure and wear property of D2 wheel steel under sliding wear condition were studied by MRH-30 sliding wear tester. After testing, a transmission electron microscope (TEM), scanning electron microscope (SEM) with electron backscatter diffraction (EBSD), and micro-hardness testers were used to characterize the surface microstructure of samples with different cycles. The results show that the wear losss samples are increased as the increase of cycles, and the wear loss of wheel samples is higher than that of rail samples. The surface hardness and thickness of deformation layer of wheel samples are increased as the cycles increase. After sliding wear, the samples surfaces form the white etching layer with the thickness of several microns. Through the analysis of surface microstructure of sample with 12,000 cycles, the lamellar cementite in pearlite is fragment into cementite particles with the decrease of depth from surface, and the cementite is dissolved at surface to lead to the form of white etching layer. The ferrite grains are refined gradually and the fraction of high angle grain boundary is increased with the decrease of depth from surface. The nanosgrains layer of ferrite grains with 5 μm thickness is formed. According to the result of finite element simulation of contact surface temperature, the formation of surface nanograins and the dissolution of cementite are caused by the severe plastic deformation. The fiber structure of samples is formed after sliding wear, with direction of . 展开更多
关键词 D2 WHEEL Steel SLIDING WEAR Surface Microstructure WHITE ETCHING Layer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部