Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph The...Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.展开更多
Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conje...Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.展开更多
Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which com...Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.展开更多
基金National Natural Science Foundation of China(No.10401010)
文摘Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.
基金Supported by National Natural Science Foundation of China (Nos. 10861006, 10401010)
文摘Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.
基金Supported by National Natural Science Foundation of China(Grant No.19971086)
文摘Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.