期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多源农地空间数据的“两区”划定应用研究 被引量:11
1
作者 游炯 裴志远 王飞 《智慧农业》 2019年第3期56-66,共11页
发展智慧农业的基础和前提是数字化,尤其是对农地资源利用、农地权属、农业生产等农业全要素的数字化。目前,国内农业数字化水平较低,农地资源空间信息应用较少,需要加快开展农地空间数据在农业生产信息采集分析和农业政策决策执行等方... 发展智慧农业的基础和前提是数字化,尤其是对农地资源利用、农地权属、农业生产等农业全要素的数字化。目前,国内农业数字化水平较低,农地资源空间信息应用较少,需要加快开展农地空间数据在农业生产信息采集分析和农业政策决策执行等方面的应用,推动我国智慧农业的发展。本研究围绕"十三五"以来新增的粮食生产功能区和重要农产品生产保护区(以下统称"两区")划定农业基础性工作,归纳了"两区"划定的相关概念,总结了划定的业务流程;结合农业生产智能化管理的业务需求和数字化成图的拓扑关系需求,为"两区"划定设计了"区-片块-地块"三级空间结构;提出了基于多源农地空间数据的"两区"划定图件测制关键技术,在分析"两区"行业功用的基础上,以"区-片块-地块"空间结构为制图导向,融合现有多源农地空间数据在空间分布和语义属性上的关联性,从特定空间尺度实现了"两区"空间分布图制作;提出了基于多源农地空间数据的"两区"划定数据建库关键技术,分析了"两区"划定数据建库的业务需求,从空间信息结构视角实现对"两区"划定地理空间实体的抽象化;总结并讨论了多源农地空间数据在"两区"划定过程中的整合应用及存在的问题。研究表明,多源农地空间数据能够在"两区"划定的关键技术环节起到数据支撑作用,同时也需针对具体的应用环境判断其信息可用性,降低多源农地空间数据的偏差及局部缺失对"两区"划定这类系统性工程所造成的影响,实现对基础数据、专题数据、管理数据和统计数据的有效集成,为"两区"划定及智慧农业领域同类基础性工作的有效推行提供参考与借鉴。 展开更多
关键词 “两区”划定 多源 农地 空间数据 制图 实体关系模型
下载PDF
Discriminant Models for Uncertainty Characterization in Area Class Change Categorization
2
作者 Jingxiong Zhang jiong you 《Geo-Spatial Information Science》 2011年第4期255-261,共7页
Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping... Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping and replicability in error modeling.As area classes are rarely completely separable in empirically realized discriminant space,where class inseparabil-ity becomes more complicated for change categorization,we seek to quantify uncertainty in area classes(and change classes)due to measurement errors and semantic discrepancy separately and hence assess their relative margins objectively.Experiments using real datasets were carried out,and a Bayesian method was used to obtain change maps.We found that there are large differences be-tween uncertainty statistics referring to data classes and information classes.Therefore,uncertainty characterization in change categorization should be based on discriminant modeling of measurement errors and semantic mismatch analysis,enabling quanti-fication of uncertainty due to partially random measurement errors,and systematic categorical discrepancies,respectively. 展开更多
关键词 UNCERTAINTY information classes data classes discriminant models conditional simulation land cover change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部