期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study on the oxidation mechanism of Al-SiC composite at elevated temperature
1
作者 jishuo han Yong Li +3 位作者 Chenhong Ma Qingyao Zheng Xiuhua Zhang Xiaofang Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2077-2087,共11页
Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was sig... Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably. 展开更多
关键词 Al-SiC composite kiln furniture Al_(4)SiC_(4) Al_(4)C_(3) oxidation mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部