Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has be...Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.展开更多
Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability.However,the phenomenon has not be...Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability.However,the phenomenon has not been well-studied till now. By utilizing mathematical model currently available,the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100℃ regardless of concentration of HAN. In tem of power consumption,100W-300W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.展开更多
基金Supported by the Project of Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0160)
文摘Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.
基金The authors would like to acknowledge Ministry ofScience,Technology and Innovation Malaysia(MOSTI)eScience Fund for funding the research project(04-05-05-SF0008).
文摘Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability.However,the phenomenon has not been well-studied till now. By utilizing mathematical model currently available,the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100℃ regardless of concentration of HAN. In tem of power consumption,100W-300W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.