In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional effect of the surface tension. Tolman length is the difference between the equimolar surface and the s...In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional effect of the surface tension. Tolman length is the difference between the equimolar surface and the surface of tension. In recent years, the magnitude, expression, and sign of the Tolman length remain an open question. An incompressible and homogeneous liquid droplet model is proposed and the approximate expression and sign for Tolman length are derived in this paper. We obtain the relation between Tolman length and the radius of the surface of tension(R_(s)) and found that they increase with the Rs decreasing. The Tolman length of plane surface tends to zero. Taking argon for example, molecular dynamics simulation is carried out by using the Lennard–Jones(LJ) potential between atoms at a temperature of 90 K. Five simulated systems are used, with numbers of argon atoms being 10140, 10935, 11760, 13500, and 15360, respectively. By methods of theoretical study and molecular dynamics simulation, we find that the calculated value of Tolman length is more than zero, and it decreases as the size is increased among the whole size range. The value of surface tension increases with the radius of the surface of tension increasing, which is consistent with Tolman’s theory. These conclusions are significant for studying the size dependence of the surface tension.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700500)the Scientific Research and Innovation Team of Cangzhou Normal University,China(Grant No.cxtdl1907)+2 种基金the Key Scientific Study Program of Hebei Provincial Higher Education Institution,China(Grant No.ZD2020410)the Cangzhou Natural Science Foundation,China(Grant No.197000001)the General Scientific Research Fund Project of Cangzhou Normal University,China(Grant No.xnjjl1906)。
文摘In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional effect of the surface tension. Tolman length is the difference between the equimolar surface and the surface of tension. In recent years, the magnitude, expression, and sign of the Tolman length remain an open question. An incompressible and homogeneous liquid droplet model is proposed and the approximate expression and sign for Tolman length are derived in this paper. We obtain the relation between Tolman length and the radius of the surface of tension(R_(s)) and found that they increase with the Rs decreasing. The Tolman length of plane surface tends to zero. Taking argon for example, molecular dynamics simulation is carried out by using the Lennard–Jones(LJ) potential between atoms at a temperature of 90 K. Five simulated systems are used, with numbers of argon atoms being 10140, 10935, 11760, 13500, and 15360, respectively. By methods of theoretical study and molecular dynamics simulation, we find that the calculated value of Tolman length is more than zero, and it decreases as the size is increased among the whole size range. The value of surface tension increases with the radius of the surface of tension increasing, which is consistent with Tolman’s theory. These conclusions are significant for studying the size dependence of the surface tension.