期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ultrasmall AuPd nanoclusters on amine-functionalized carbon blacks as high-performance bi-functional catalysts for ethanol electrooxidation and formic acid dehydrogenation 被引量:1
1
作者 Yuhuan Cui Ming Zhao +4 位作者 Yining Zou Junyu Zhang jiuhui han Zhili Wang Qing Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期556-563,共8页
The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile... The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications. 展开更多
关键词 Ethanol electrooxidation Formic acid dehydrogenation AuPd NANOCLUSTERS Bi-functional catalyst
下载PDF
Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics 被引量:1
2
作者 Lin Yan Lingshuo Zong +6 位作者 Qi Sun Junpeng Guo Zhenyang Yu Zhijun Qiao jiuhui han Zhenyu Cui Jianli Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期163-173,I0005,共12页
Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anod... Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes. 展开更多
关键词 Sodium-ion storage mechanism Bimetallic oxide anode material Crystal phase evolution Oxygen vacancies Kinetic analyses
下载PDF
Dynamic shrinkage of metal-oxygen bonds in atomic Co-doped nanoporous RuO_(2) for acidic oxygen evolution 被引量:3
3
作者 Qiuli Wu Kang Jiang +5 位作者 jiuhui han Dechao Chen Min Luo Jiao Lan Ming Peng Yongwen Tan 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1262-1268,共7页
The design of highly active and stable catalysts for the oxygen evolution reaction(OER) in acidic media has become an attractive research area for the development of energy conversion and storage technologies. However... The design of highly active and stable catalysts for the oxygen evolution reaction(OER) in acidic media has become an attractive research area for the development of energy conversion and storage technologies. However, progress in this area has been limited by the poor understanding of the dynamic active structure of catalysts under realistic OER conditions. Here, an atomic Co-doped nanoporous Ru O_(2)electrocatalyst, which exhibited excellent OER activity and stability in acidic conditions, was synthesized through annealing and etching of a nanoporous Co-Ru alloy. Operando X-ray absorption spectroscopy results confirmed that the etching strategy produced abundant oxygen vacancies around the metal centers in the atomic Co-doped nanoporous Ru O_(2)electrocatalyst. These vacancies created contracted metaloxygen ligand bonds under realistic OER conditions. The dynamic structural evolution of the synthesized electrocatalyst allowed them to experience lower kinetic barriers during OER catalysis, resulting in enhanced catalytic activity and stability.This study also provided atomic details on the active structure of the electrocatalyst and the influence of their structural evolution on OER activity. 展开更多
关键词 acidic oxygen evolution reaction nanoporous catalysts operando X-ray absorption spectroscopy dynamic structural evolution
原文传递
3D Nanoporous Graphene Based Single-Atom Electrocatalysts for Energy Conversion and Storage
4
作者 Isaac Johnson jiuhui han Mingwei Chen 《Accounts of Materials Research》 2022年第10期1011-1021,共11页
CONSPECTUS:This Account will provide an overview and analysis on recent research of 3D nanoporous graphene based single-atom electrocatalysts for energy conversion and storage applications.In order to meet the increas... CONSPECTUS:This Account will provide an overview and analysis on recent research of 3D nanoporous graphene based single-atom electrocatalysts for energy conversion and storage applications.In order to meet the increasing energy demands and assist in the transition from a global economy that relies heavily on fossil fuels to one that utilizes more renewable energy sources,there is urgent need to develop highperforming electrocatalysts toward renewable energy related reactions.These catalysts are expected to have low overpotentials,high reaction selectivity,long cycling stability,and,importantly,lower materials costs to address the challenges of traditional nanoparticulate noble metal catalysts. 展开更多
关键词 utilize SELECTIVITY stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部