The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumpt...The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumption essentially.However,this issue has rarely been discussed in depth in previous research.A comprehensive function of energy consumption of the machining unit is built to address this problem.Surrogate models are established by using effective fitting methods.An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models,and the parameters of the motor and structure are considered simultaneously.Results show that the energy consumption and tool displacement of the machining unit are reduced,indicating that energy saving is achieved and the machining accuracy is guaranteed.The influence of optimization variables on the objectives is analyzed to inform the design.展开更多
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.51975075 and 52105506)the Chongqing Technology Innovation and Application Program,China(Grant No.cstc2020jscx-msxmX0221).
文摘The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumption essentially.However,this issue has rarely been discussed in depth in previous research.A comprehensive function of energy consumption of the machining unit is built to address this problem.Surrogate models are established by using effective fitting methods.An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models,and the parameters of the motor and structure are considered simultaneously.Results show that the energy consumption and tool displacement of the machining unit are reduced,indicating that energy saving is achieved and the machining accuracy is guaranteed.The influence of optimization variables on the objectives is analyzed to inform the design.