期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression
1
作者 jiyun xu Hanzhang Li +1 位作者 Haijun Wang Lei Tang 《Deep Underground Science and Engineering》 2023年第1期37-51,共15页
Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engin... Fractures are widely present in geomaterials of civil engineering and deep underground engineering.Given that geomaterials are usually brittle,the fractures can significantly affect the evaluation of underground engineering construction safety and the early warning of rock failure.However,the crack initiation and propagation in brittle materials under composite loading remain unknown so far.In this study,a three-dimensional internal laser-engraved cracking technique was applied to produce internal cracks without causing damage to the surfaces.The uniaxial compression tests were performed on a brittle material with internal cracks to investigate the propagation of these internal cracks at different dip angles under compression and shear.The test results show that the wing crack propagation mainly occurs in the specimen with an inclined internal crack,which is a mixed-ModeⅠ–Ⅱ–Ⅲfracture;in contrast,ModeⅠfracture is present in the specimen with a vertical internal crack.The fractography characteristics of ModeⅢfracture display a lance-like pattern.The fracture mechanism in the brittle material under compression is that the internal wing cracks propagate to the ends of the whole sample and cause the final failure.The initial deflection angle of the wing crack is determined by the participation ratio of stress intensity factors KII to KI at the tip of the internal crack. 展开更多
关键词 3D-ILC brittle materials internal crack penny-shaped crack rock fracture uniaxial compression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部