While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are r...While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.展开更多
文摘While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.