A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system...A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. We will then discuss how approximations to these problems can be found computationally using finite difference methods and optimization. Examples will be presented in one, two and three dimensions.展开更多
文摘A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. We will then discuss how approximations to these problems can be found computationally using finite difference methods and optimization. Examples will be presented in one, two and three dimensions.