We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we real...We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.展开更多
An existing Purdue-type rainfall simulator (RFS) was designed to be transported using a commercial flatbed trailer that was modified by cutting out a section of the wooden bed allowing the RFS to be positioned directl...An existing Purdue-type rainfall simulator (RFS) was designed to be transported using a commercial flatbed trailer that was modified by cutting out a section of the wooden bed allowing the RFS to be positioned directly above the target area to measure soil erosion and water runoff. To allow water to pass through the trailer undisturbed, the axle of the trailer was removed and replaced with axle-free wheel hubs and springs. Additionally, a remote control mover rated for 2000 kg was incorporated in our design. The final result was a portable and mobile RFS that can be moved to fields using a trailer hitch and can be operated by two individuals. The cost of the hardware, not including the RFS, is $5300 (USD) and detailed design plans are available.展开更多
Multiseed (msd) mutant sorghum [Sorghum bicolor (L.) Moench] lines with greatly increased seed numbers were developed. It was originally thought that the msd trait could increase grain yield several times in compariso...Multiseed (msd) mutant sorghum [Sorghum bicolor (L.) Moench] lines with greatly increased seed numbers were developed. It was originally thought that the msd trait could increase grain yield several times in comparison with the wild type from which the mutant was derived. However, in a small plot trial, msd seed yield decreased when compared to the parent line. Herein we report results that msd seed yield remained either unchanged or slightly increased in comparison to the parent line. We suggest that attempts to measure msd sorghum seed yield were complicated due to systematic errors associated with the post-harvest processing methods, including threshing and pneumatic winnowing equipment that was used for harvest. That is, seed recovery and seed loss from individual panicles were affected by the post-harvest processing. When evaluating sorghum grain yield of types with different seed sizes, threshing and seed cleaning harvesting methods should be optimized for each sorghum line.展开更多
文摘We are evaluating dryland cotton production in Martin County, Texas, measuring cotton lint yield per unit of rainfall. Our goal is to collect rainfall data per 250 - 400 ha. Upon selection of a rainfall gauge, we realized that the cost of using, for example, a tipping bucket-type rain gauge would be too expensive and thus searched for an alternative method. We selected an all-in-one commercially available weather station;hereafter, referred to as a Personal Weather Station (PWS) that is both wireless and solar powered. Our objective was to evaluate average measurements of rainfall obtained with the PWS and to compare these to measurements obtained with an automatic weather station (AWS). For this purpose, we installed four PWS deployed within 20 m of the Plant Stress and Water Conservation Meteorological Tower that was used as our AWS, located at USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX. In addition, we measured and compared hourly average values of short-wave irradiance (R<sub>g</sub>), air temperature (T<sub>air</sub>) and relative humidity (RH), and wind speed (WS), and calculated values of dewpoint temperature (T<sub>dew</sub>). This comparison was done over a 242-day period (1 October 2022-31 May 2023) and results indicated that there was no statistical difference in measurements of rainfall between the PWS and AWS. Hourly average values of R<sub>g</sub> measured with the PWS and AWS agreed on clear days, but PWS measurements were higher on cloudy days. There was no statistical difference between PWS and AWS hourly average measurements of T<sub>air</sub>, RH, and calculated T<sub>dew</sub>. Hourly average measurements of R<sub>g</sub> and WS were more variable. We concluded that the PWS we selected will provide adequate values of rainfall and other weather variables to meet our goal of evaluating dryland cotton lint yield per unit rainfall.
文摘An existing Purdue-type rainfall simulator (RFS) was designed to be transported using a commercial flatbed trailer that was modified by cutting out a section of the wooden bed allowing the RFS to be positioned directly above the target area to measure soil erosion and water runoff. To allow water to pass through the trailer undisturbed, the axle of the trailer was removed and replaced with axle-free wheel hubs and springs. Additionally, a remote control mover rated for 2000 kg was incorporated in our design. The final result was a portable and mobile RFS that can be moved to fields using a trailer hitch and can be operated by two individuals. The cost of the hardware, not including the RFS, is $5300 (USD) and detailed design plans are available.
文摘Multiseed (msd) mutant sorghum [Sorghum bicolor (L.) Moench] lines with greatly increased seed numbers were developed. It was originally thought that the msd trait could increase grain yield several times in comparison with the wild type from which the mutant was derived. However, in a small plot trial, msd seed yield decreased when compared to the parent line. Herein we report results that msd seed yield remained either unchanged or slightly increased in comparison to the parent line. We suggest that attempts to measure msd sorghum seed yield were complicated due to systematic errors associated with the post-harvest processing methods, including threshing and pneumatic winnowing equipment that was used for harvest. That is, seed recovery and seed loss from individual panicles were affected by the post-harvest processing. When evaluating sorghum grain yield of types with different seed sizes, threshing and seed cleaning harvesting methods should be optimized for each sorghum line.