期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Net ecosystem carbon exchange for Bermuda grass growing in mesocosms as affected by irrigation frequency 被引量:1
1
作者 Yuan LI Gabriel Y.K.MOINET +2 位作者 Timothy J.CLOUGH john e.hunt David WHITEHEAD 《Pedosphere》 SCIE CAS CSCD 2022年第3期393-401,共9页
Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead... Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead to either net accumulation or loss of soil C.While there are many studies on the effect of water availability on biomass production and soil C stocks,much less is known about the effect of the frequency of water inputs on the components of CO_(2)exchange.We grew Bermuda grass(Cynodon dactylon L.)in mesocosms under irrigation frequencies of every day(I_(1) treatment,30 d),every two days(I_(2) treatment,12 d),every three days(I_(3) treatment,30 d),and every six days(I_(6) treatment,18 d,after I_(2) treatment).Rates of CO_(2)exchange for estimating net ecosystem CO_(2)exchange(F_(N)),ecosystem respiration(R_(E)),and soil respiration(R_(S))were measured,and gross C uptake by plants(F_(G))and respiration from leaves(R_(L))were calculated during two periods,1–12 and 13–30 d,of the 30-d experiment.During the first 12 d,there were no significant differences in cumulative F_(N)(mean±standard deviation,61±30 g C m^(-2),n=4).During the subsequent 18 d,cumulative F_(N) decreased with decreasing irrigation frequency and increasing cumulative soil water deficit(W),with values of 70±22,60±16,and 18±12 g C m^(-2) for the I_(1),I_(3),and I_(6) treatments,respectively.There were similar decreases in F_(G),R_(E),and R_(L) with increasing W,but differences in R_(S) were not significant.Use of the C_(4) grass growing in a C_(3)-derived soil enabled partitioning of R_(S) into its autotrophic(R_(A))and heterotrophic(R_(H))components using a^(13)C natural abundance isotopic technique at the end of the experiment when differences in cumulative W between the treatments were the greatest.The values of R_(H) and its percentage contributions to R_(S)(43%±8%,42%±8%,and 8%±5%for the I_(1),I_(3),and I_(6) treatments,respectively)suggested that R_(H) remained unaffected across a wide range of W and then decreased under extreme W.There were no significant differences in aboveground biomass between the treatments.Nitrous oxide(N_(2)O)emission was measured to determine if there was a trade-off effect between irrigation frequency and increasing W on net greenhouse gas emission,but no significant differences were found between the treatments.These findings suggest that over short periods in well-drained soil,irrigation frequency could be managed to manipulate soil water deficit in order to reduce net belowground respiratory C losses,particularly those from the microbial decomposition of soil organic matter,with no significant effect on biomass production and N_(2)O emission. 展开更多
关键词 ^(13)C natural abundance CO_(2)exchange N_(2)O emission soil heterotrophic respiration water deficit
原文传递
Soil carbon availability affects nitrogen transformation under irrigated lucerne
2
作者 Adriano S.NASCENTE Jonathan NUNEZ +4 位作者 Scott L.GRAHAM Gabriel Y.K.MOINET john e.hunt Graeme N.D.ROGERS David WHITEHEAD 《Pedosphere》 SCIE CAS CSCD 2021年第6期977-980,共4页
Dear Editor,Approximately 55% of the agricultural land in New Zealand is grazed grassland to support the expanding dairy and meat industries.Intensified management practices such as irrigation,nitrogen(N)fertiliser ap... Dear Editor,Approximately 55% of the agricultural land in New Zealand is grazed grassland to support the expanding dairy and meat industries.Intensified management practices such as irrigation,nitrogen(N)fertiliser application,and of forage crop provision are increasingly being adopted to meet the growing production demands. 展开更多
关键词 GRASSLAND EXPANDING transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部