期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Measurement of the Energy Absorbed during Nanoscale Deformation of Human Peritubular and Intertubular Dentin
1
作者 jiahau Yan Burak Taskonak john j. mecholsky jr. 《Materials Sciences and Applications》 2022年第4期144-157,共14页
Mineralized tissues are usually constructed of nanosized materials with ordered hierarchical structures. The main reason for their high load-bearing ability is the multi-scale hierarchy. It is important to have a meth... Mineralized tissues are usually constructed of nanosized materials with ordered hierarchical structures. The main reason for their high load-bearing ability is the multi-scale hierarchy. It is important to have a method for measuring the energy absorbed during the nanoscale deformation of mineralized tissues. The objective of this study was to use a combination of nanoindentation and elastic-plastic mechanics techniques to measure the damage resistance of peritubular and intertubular dentin, based on the energy consumed in the plastic deformation regime and the volume created by the indents. The control materials were soda-lime glass, gold, and poly-methyl methacrylate (PMMA). Plastic deformation energy was calculated from the plastic part of load-displacement curves. The mean values of peritubular dentin and intertubular dentin were 3.8 × 10<sup>9</sup>, and 5.2 × 10<sup>9</sup> J/m<sup>3</sup>, respectively, compared to glass, PMMA, and gold which were 3.3 × 10<sup>7</sup>, 1.3 × 10<sup>9</sup>, and 3.1 × 10<sup>9</sup> J/m<sup>3</sup>, respectively. This method can be applied to study the resistance of mineralized tissues or organic/inorganic hybrid materials to deformation at the nanoscale. 展开更多
关键词 DENTIN Nano-Indentation Plastic Deformation Energy Elastic-Plastic Mechanics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部