期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Quantum Microverse: A Prime Number Framework for Understanding the Universe
1
作者 john r. crary 《American Journal of Computational Mathematics》 2024年第2期264-274,共11页
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139... This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together. 展开更多
关键词 Fine Structure Constant Fractional Coupling Constants Matter/Antimatter Dark Matter/Energy Quantum Gravity Prime Numbers Set Theory
下载PDF
A Conceptual Model of Our Universe Derived from the Fine Structure Constant (α)
2
作者 john r. crary 《American Journal of Computational Mathematics》 2023年第4期524-532,共9页
The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of ... The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of the electromagnetic force and is precisely tuned to make our universe functional. This study introduces a novel approach to understanding a conceptual model for how this critical number is part of a larger design rather than a random accident of nature. The Fine Structure Constant (FSC) model employs a Python program to calculate n-dimensional property sets for prime number universes where α equals the whole number values 137 and 139, representing twin prime universes without a fractional constant. Each property is defined by theoretical prime number sets that represent focal points of matter and wave energy in their respective universes. This work aims to determine if these prime number sets can reproduce the observed α value, giving it a definable structure. The result of the FSC model produces a α value equal to 137.036, an almost exact match. Furthermore, the model indicates that other twin prime pairs also have a role in our functional universe, providing a hierarchy for atomic orbital energy levels and alignment with the principal and azimuthal quantum numbers. In addition, it construes stable matter as property sets with the highest ratio of twin prime elements. These results provide a new perspective on a mathematical structure that shapes our universe and, if valid, has the structural complexity to guide future research. 展开更多
关键词 Fine Structure Constant Conceptual Model Prime Numbers Property Sets Quantum PHYSICS UNIVERSE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部