期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accelerating materials discovery using artificial intelligence, high performance computing and robotics 被引量:7
1
作者 Edward O.Pyzer-Knapp Jed W.Pitera +6 位作者 Peter W.J.Staar Seiji Takeda Teodoro Laino Daniel P.Sanders James Sexton john r.smith Alessandro Curioni 《npj Computational Materials》 SCIE EI CSCD 2022年第1期767-775,共9页
New tools enable new ways of working,and materials science is no exception.In materials discovery,traditional manual,serial,and human-intensive work is being augmented by automated,parallel,and iterative processes dri... New tools enable new ways of working,and materials science is no exception.In materials discovery,traditional manual,serial,and human-intensive work is being augmented by automated,parallel,and iterative processes driven by Artificial Intelligence (AI),simulation and experimental automation.In this perspective,we describe how these new capabilities enable the acceleration and enrichment of each stage of the discovery cycle.We show,using the example of the development of a novel chemically amplified photoresist,how these technologies’ impacts are amplified when they are used in concert with each other as powerful,heterogeneous workflows. 展开更多
关键词 artificial COMPUTING enable
原文传递
Accelerating material design with the generative toolkit for scientific discovery
2
作者 Matteo Manica Jannis Born +21 位作者 Joris Cadow Dimitrios Christofidellis Ashish Dave Dean Clarke Yves Gaetan Nana Teukam Giorgio Giannone Samuel C.Hoffman Matthew Buchan Vijil Chenthamarakshan Timothy Donovan Hsiang Han Hsu Federico Zipoli Oliver Schilter Akihiro Kishimoto Lisa Hamada Inkit Padhi Karl Wehden Lauren McHugh Alexy Khrabrov Payel Das Seiji Takeda john r.smith 《npj Computational Materials》 SCIE EI CSCD 2023年第1期1649-1654,共6页
With the growing availability of data within various scientific domains,generative models hold enormous potential to accelerate scientific discovery.They harness powerful representations learned from datasets to speed... With the growing availability of data within various scientific domains,generative models hold enormous potential to accelerate scientific discovery.They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses with the potential to impact material discovery broadly.We present the Generative Toolkit for Scientific Discovery(GT4SD).This extensible open-source library enables scientists,developers,and researchers to train and use state-of-the-art generative models to accelerate scientific discovery focused on organic material design. 展开更多
关键词 enable SCIENTIFIC FORMULATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部