Perioperative hypothermia, core temperature below 36.0 ℃, transpires due to disruption of thermoregulationby anesthesia coupled with cold exposure to procedural surroundings and cleansing agents. Although most public...Perioperative hypothermia, core temperature below 36.0 ℃, transpires due to disruption of thermoregulationby anesthesia coupled with cold exposure to procedural surroundings and cleansing agents. Although most publications have focused on thermoregulation disruption with general anesthesia, neuraxial anesthesia may also cause significant hypothermia. The clinical consequences of perioperative hypothermia are multiple and include patient discomfort, shivering, platelet dysfunction, coagulopathy, and increased vasoconstriction associated with a higher risk of wound infection. Furthermore, postoperative cardiac events occur at a higher rate; although it is unclear whether this is due to increased oxygen consumption or norepinephrine levels. Hypothermia may also affect pharmacokinetics and prolong postoperative recovery times and hospital length of stay. In order to combat perioperative hypothermia, many prevention strategies have been examined. Active and passive cutaneous warming are likely the most common and aim to both warm and prevent heat loss; many consider active warming a standard of care for surgeries over one hour. Intravenous nutrients have also been examined to boost metabolic heat production. Additionally, pharmacologic agents that induce vasoconstriction have been studied with the goal of minimizing heat loss. Despite these multiple strategies for prevention and treatment, hypothermia continues to be a problem and a common consequence of the perioperative period. This literature review presents the most recent evidence on the disruption of temperature regulation by anesthesia and perioperative environment, the consequences of hypothermia, and the methods for hypothermia prevention and treatment.展开更多
文摘Perioperative hypothermia, core temperature below 36.0 ℃, transpires due to disruption of thermoregulationby anesthesia coupled with cold exposure to procedural surroundings and cleansing agents. Although most publications have focused on thermoregulation disruption with general anesthesia, neuraxial anesthesia may also cause significant hypothermia. The clinical consequences of perioperative hypothermia are multiple and include patient discomfort, shivering, platelet dysfunction, coagulopathy, and increased vasoconstriction associated with a higher risk of wound infection. Furthermore, postoperative cardiac events occur at a higher rate; although it is unclear whether this is due to increased oxygen consumption or norepinephrine levels. Hypothermia may also affect pharmacokinetics and prolong postoperative recovery times and hospital length of stay. In order to combat perioperative hypothermia, many prevention strategies have been examined. Active and passive cutaneous warming are likely the most common and aim to both warm and prevent heat loss; many consider active warming a standard of care for surgeries over one hour. Intravenous nutrients have also been examined to boost metabolic heat production. Additionally, pharmacologic agents that induce vasoconstriction have been studied with the goal of minimizing heat loss. Despite these multiple strategies for prevention and treatment, hypothermia continues to be a problem and a common consequence of the perioperative period. This literature review presents the most recent evidence on the disruption of temperature regulation by anesthesia and perioperative environment, the consequences of hypothermia, and the methods for hypothermia prevention and treatment.