Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall ch...Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO_(2)pathway, we used the Community Earth System Model(CESM) with28 ensemble members in which the CO_(2)concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm(ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm(ramp-down period). Although the CO_(2)concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a rampdown period than that during a ramp-up period when the two periods of the same CO_(2)concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Ni?o-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO_(2)does not guarantee the return of regional rainfall to the previous climate state with the same CO_(2)concentration.展开更多
基金supported by the National Research Foundation of Korea(NRF) grant(NRF-2018R1A5A1024958)。
文摘Understanding the regional hydrological response to varying CO_(2)concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO_(2)pathway, we used the Community Earth System Model(CESM) with28 ensemble members in which the CO_(2)concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm(ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm(ramp-down period). Although the CO_(2)concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a rampdown period than that during a ramp-up period when the two periods of the same CO_(2)concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Ni?o-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO_(2)does not guarantee the return of regional rainfall to the previous climate state with the same CO_(2)concentration.