期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium-sulfur batteries
1
作者 Yang Li Yong-Cheng Zhu +5 位作者 Sowjanya Vallem Man Li Seunghyun Song Tao Chen Long-Cheng Tang joonho bae 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期313-323,I0008,共12页
Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries ... Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries with high loading of flammable sulfur faces the challenges of electrochemical performance degradation owing to the shuttle effect and safety issues related to fire or explosion accidents.In this work,we report a three-dimensional(3D)conductive nitrogen-doped carbon foam supported electrostatic self-assembled MXene-ammonium polyphosphate(NCF-MXene-APP)layer as a heat-resistant,thermally-insulated,flame-retardant,and freestanding host for Li-S batteries with a facile and costeffective synthesis method.Consequently,through the use of NCF-MXene-APP hosts that strongly anchor polysulfides,the Li-S batteries demonstrate outstanding electrochemical properties,including a high initial discharge capacity of 1191.6 mA h g^(-1),excellent rate capacity of 755.0 mA h g^(-1)at 1 C,and long-term cycling stability with an extremely low-capacity decay rate of 0.12%per cycle at 2 C.More importantly,these batteries can continue to operate reliably under high temperature or flame attack conditions.Thus,this study provides valuable insights into the design of safe high-performance Li-S batteries. 展开更多
关键词 FLAME-RETARDANT MXene Ammonium polyphosphate Safety Lithium-sulfur battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部