Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interest...Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.展开更多
文摘Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.