In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and...In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.展开更多
In this paper,we present a surface reconstruction via 2D strokes and a vector field on the strokes based on a two-step method.In the first step,from sparse strokes drawn by artists and a given vector field on the stro...In this paper,we present a surface reconstruction via 2D strokes and a vector field on the strokes based on a two-step method.In the first step,from sparse strokes drawn by artists and a given vector field on the strokes,we propose a nonlinear vector interpolation combining total variation(TV)and H1 regularization with a curl-free constraint for obtaining a dense vector field.In the second step,a height map is obtained by integrating the dense vector field in the first step.Jump discontinuities in surface and discontinuities of surface gradients can be well reconstructed without any surface distortion.We also provide a fast and efficient algorithm for solving the proposed functionals.Since vectors on the strokes are interpreted as a projection of surface gradients onto the plane,different types of strokes are easily devised to generate geometrically crucial structures such as ridge,valley,jump,bump,and dip on the surface.The stroke types help users to create a surface which they intuitively imagine from 2D strokes.We compare our results with conventional methods via many examples.展开更多
文摘In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.
基金The research is supported by MOE(Ministry of Education)Tier II project T207N2202and National Research Foundation grant,which is administered by the Media Development Authority Interactive Digital Media Programme Office,MDA(IDMPO).
文摘In this paper,we present a surface reconstruction via 2D strokes and a vector field on the strokes based on a two-step method.In the first step,from sparse strokes drawn by artists and a given vector field on the strokes,we propose a nonlinear vector interpolation combining total variation(TV)and H1 regularization with a curl-free constraint for obtaining a dense vector field.In the second step,a height map is obtained by integrating the dense vector field in the first step.Jump discontinuities in surface and discontinuities of surface gradients can be well reconstructed without any surface distortion.We also provide a fast and efficient algorithm for solving the proposed functionals.Since vectors on the strokes are interpreted as a projection of surface gradients onto the plane,different types of strokes are easily devised to generate geometrically crucial structures such as ridge,valley,jump,bump,and dip on the surface.The stroke types help users to create a surface which they intuitively imagine from 2D strokes.We compare our results with conventional methods via many examples.