Experimental, theoretical and computational studies revealed that the characteristic time scales involved in counterion dynamics in polyelectrolytes systems might span several orders of magnitude ranging from subnanos...Experimental, theoretical and computational studies revealed that the characteristic time scales involved in counterion dynamics in polyelectrolytes systems might span several orders of magnitude ranging from subnanosecond times to time scales corresponding to acoustic-like phonon mode frequencies, with an structural organization of counterions in charge density waves (CDWs). These facts raise the possibility of observing Magnetic Resonance (MR) signals due to the movement of counterions in polyelectrolytes. In case that this signal is detected in macroions or other biological systems, like micelles, vesicles, organeles, etc. with rotational symmetry, this method opens a new tool to measure with precission the counterions velocity.展开更多
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in ou...We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as compared with the case without them. In conclusion, hydrodynamic interactions influence substantially the dynamics of a ratchet dimer Brownian motor;consequently they have to be considered in any theory where the molecular motors are in a liquid medium.展开更多
We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equ...We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equation for the temperature. We have developed equations in order to determine relaxation time of the temperature fluctuations, τT = 4.62 × 10-10s. We have performed a spectral analysis of the thermal fluctuations, with the result that temporal correlations are in the one-digit ps range, and the thermal noise excites the thermal modes in the two-digit GHz range. Also we observe long-range spatial correlation up to more than half the size of the cell, 600 nm;the wave number, q, is in the 106 m-1 range. We have also determined two thermal relaxation lengths in the z direction: l1 = 1.18 nm and l2 = 9.86 nm.展开更多
文摘Experimental, theoretical and computational studies revealed that the characteristic time scales involved in counterion dynamics in polyelectrolytes systems might span several orders of magnitude ranging from subnanosecond times to time scales corresponding to acoustic-like phonon mode frequencies, with an structural organization of counterions in charge density waves (CDWs). These facts raise the possibility of observing Magnetic Resonance (MR) signals due to the movement of counterions in polyelectrolytes. In case that this signal is detected in macroions or other biological systems, like micelles, vesicles, organeles, etc. with rotational symmetry, this method opens a new tool to measure with precission the counterions velocity.
文摘We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as compared with the case without them. In conclusion, hydrodynamic interactions influence substantially the dynamics of a ratchet dimer Brownian motor;consequently they have to be considered in any theory where the molecular motors are in a liquid medium.
文摘We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equation for the temperature. We have developed equations in order to determine relaxation time of the temperature fluctuations, τT = 4.62 × 10-10s. We have performed a spectral analysis of the thermal fluctuations, with the result that temporal correlations are in the one-digit ps range, and the thermal noise excites the thermal modes in the two-digit GHz range. Also we observe long-range spatial correlation up to more than half the size of the cell, 600 nm;the wave number, q, is in the 106 m-1 range. We have also determined two thermal relaxation lengths in the z direction: l1 = 1.18 nm and l2 = 9.86 nm.