Weather and climate extremes are part of the natural variability. However, the frequency and intensity of precipitation extremes have increased in the globe following the global warming. Extreme precipitation impacts ...Weather and climate extremes are part of the natural variability. However, the frequency and intensity of precipitation extremes have increased in the globe following the global warming. Extreme precipitation impacts such as landslides and flooding with implications to vulnerability and adaptation are discussed for two regions of the state of S?o Paulo: the Metropolitan Region of Campinas and the Metropolitan Region of the Baixada Santista, located in southeastern South America. Simulations and projections obtained from four integrations of the Regional Eta model are analyzed to investigate the model behavior during the period of 1961-1990 and the projections within the period of 2011-2100. Uncertainties are discussed based on the standard deviation among the model spread. The projections show precipitation increase in the Metropolitan Region of Campinas during DJF for the near and distant future, while there are more uncertainties in the other seasons. In the Metropolitan Region of Baixada Santista, the precipitation increase is projected to all seasons, except JJA, when there is higher uncertainty. Daily rainfall indices suggest an increase of precipitation during the rainy days, but a reduction in the number of rainy days in both locations. The projections show a reduction of light rains and an increase of heavy rains at both regions. The model identifies the South Atlantic Convergence Zone and frontal systems as precipitation patterns associated with extremes in the two locations. The results can be useful for adaptation actions, since the regions are highly populated and have high vulnerabilities.展开更多
文摘Weather and climate extremes are part of the natural variability. However, the frequency and intensity of precipitation extremes have increased in the globe following the global warming. Extreme precipitation impacts such as landslides and flooding with implications to vulnerability and adaptation are discussed for two regions of the state of S?o Paulo: the Metropolitan Region of Campinas and the Metropolitan Region of the Baixada Santista, located in southeastern South America. Simulations and projections obtained from four integrations of the Regional Eta model are analyzed to investigate the model behavior during the period of 1961-1990 and the projections within the period of 2011-2100. Uncertainties are discussed based on the standard deviation among the model spread. The projections show precipitation increase in the Metropolitan Region of Campinas during DJF for the near and distant future, while there are more uncertainties in the other seasons. In the Metropolitan Region of Baixada Santista, the precipitation increase is projected to all seasons, except JJA, when there is higher uncertainty. Daily rainfall indices suggest an increase of precipitation during the rainy days, but a reduction in the number of rainy days in both locations. The projections show a reduction of light rains and an increase of heavy rains at both regions. The model identifies the South Atlantic Convergence Zone and frontal systems as precipitation patterns associated with extremes in the two locations. The results can be useful for adaptation actions, since the regions are highly populated and have high vulnerabilities.