Let I be an interval of positive rational numbers. Then the set S (I) = T ∩ N, where T is the submonoid of (Q0+, +) generated by T, is a numerical semigroup. These numerical semigroups are called proportionally...Let I be an interval of positive rational numbers. Then the set S (I) = T ∩ N, where T is the submonoid of (Q0+, +) generated by T, is a numerical semigroup. These numerical semigroups are called proportionally modular and can be characterized as the set of integer solutions of a Diophantine inequality of the form ax rood b 〈 cx. In this paper we are interested in the study of the maximal intervals I subject to the condition that S (I) has a given multiplicity. We also characterize the numerical semigroups associated with these maximal intervals.展开更多
基金supported by the project MTM2004-01446 and FEDER fundssupported by the Luso-Espanhola action HP2004-0056
文摘Let I be an interval of positive rational numbers. Then the set S (I) = T ∩ N, where T is the submonoid of (Q0+, +) generated by T, is a numerical semigroup. These numerical semigroups are called proportionally modular and can be characterized as the set of integer solutions of a Diophantine inequality of the form ax rood b 〈 cx. In this paper we are interested in the study of the maximal intervals I subject to the condition that S (I) has a given multiplicity. We also characterize the numerical semigroups associated with these maximal intervals.