Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical prop...Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical properties. The sintering kinetics was determined by dilatometry at temperatures from 900 to 1260°C. The mechanical properties of the sintered samples were evaluated by microhardness and compression tests. The sintering kinetics indicated that the predominant mechanism depends on the relative density irrespective of the particle size used. The mechanical properties of the sintered samples are adversely affected by increasing pore volume fraction. The elastic Young's modulus and yield stress follow a power law function of the relative density. The fracture behavior after compression is linked to the neck size developed during sintering, exhibiting two different mechanisms of failure: interparticle neck breaking and intergranular cracking in samples with relative densities below and above of 90%, respectively. The main conclusion is that relative density is responsible for the kinetics, mechanical properties, and failure behavior of Ti6 Al4 V powders.展开更多
基金the National Laboratory SEDEAM-National Council for Science and Technology (CONACYT)ECOS M15P01 for the financial support and the facilities to develop this study
文摘Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical properties. The sintering kinetics was determined by dilatometry at temperatures from 900 to 1260°C. The mechanical properties of the sintered samples were evaluated by microhardness and compression tests. The sintering kinetics indicated that the predominant mechanism depends on the relative density irrespective of the particle size used. The mechanical properties of the sintered samples are adversely affected by increasing pore volume fraction. The elastic Young's modulus and yield stress follow a power law function of the relative density. The fracture behavior after compression is linked to the neck size developed during sintering, exhibiting two different mechanisms of failure: interparticle neck breaking and intergranular cracking in samples with relative densities below and above of 90%, respectively. The main conclusion is that relative density is responsible for the kinetics, mechanical properties, and failure behavior of Ti6 Al4 V powders.