期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Liquid-phase 3D bioprinting of gelatin alginate hydrogels:influence of printing parameters on hydrogel line width and layer height 被引量:1
1
作者 Maha Alruwaili jose a.lopez +2 位作者 Kevin McCarthy Emmanuel G.Reynaud Brian J.Rodriguez 《Bio-Design and Manufacturing》 SCIE CSCD 2019年第3期172-180,共9页
Extrusion-based 3D bioprinting is a direct deposition approach used to create three-dimensional(3D)tissue scaffolds typically comprising hydrogels.Hydrogels are hydrated polymer networks that are chemically or physica... Extrusion-based 3D bioprinting is a direct deposition approach used to create three-dimensional(3D)tissue scaffolds typically comprising hydrogels.Hydrogels are hydrated polymer networks that are chemically or physically cross-linked.Often,3D bioprinting is performed in air,despite the hydrated nature of hydrogels and the potential advantage of using a liquid phase to provide cross-linking and otherwise functionalize the hydrogel.In this work,we print gelatin alginate hydrogels directly into a cross-linking solution of calcium chloride and investigate the influence of nozzle diameter,distance between nozzle and surface,calcium chloride concentration,and extrusion rate on the dimensions of the printed hydrogel.The hydrogel layer height was generally found to increase with increasing extrusion rate and nozzle distance,according to the increased volume extruded and the available space,respectively.In addition,the hydrogel width was generally found to increase with decreasing nozzle distance and cross-linking concentration corresponding to confinement-induced spreading and low crosslinking regimes,respectively.Width/height ratios of^1 were generally achieved when the nozzle diameter and distance were comparable above a certain cross-linking concentration.Using these relationships,biocompatible 3D multilayer structures were successfully printed directly into calcium chloride cross-linking solution. 展开更多
关键词 Gelatin alginate HYDROGEL Additive manufacturing 3D printing 3D bioprinting BIOMATERIALS Extrusion Bioplotting
下载PDF
血小板糖蛋白Ⅰbα因子突变(A156V)导致其与血管性血友病因子相互作用缺陷 被引量:2
2
作者 董京飞 Chester Li +3 位作者 Alicia J.Schade Lily Sun Larry V.McIntire jose a.lopez 《中华血液学杂志》 CSCD 北大核心 2000年第9期453-456,共4页
目的 研究在流体切应力作用下表达突变的细胞与固着的血管性血友病因子 (vWF)相互作用中GPⅠbα突变 (A15 6V)的意义。方法 在GPⅠbαcDNA中直接诱发的突变克隆到哺乳类表达载体pDX的EcoRⅠ位点 ,随后将突变的cDNA转染在CHOβⅨ细胞... 目的 研究在流体切应力作用下表达突变的细胞与固着的血管性血友病因子 (vWF)相互作用中GPⅠbα突变 (A15 6V)的意义。方法 在GPⅠbαcDNA中直接诱发的突变克隆到哺乳类表达载体pDX的EcoRⅠ位点 ,随后将突变的cDNA转染在CHOβⅨ细胞。人的vWF通过甘氨酸和氯化钠沉淀及在Sepharose 4B柱分离的方法从血液冷沉淀制剂中纯化。纯化的vWF固着在盖玻片上 ,在平行板液流室中进行细胞滚动研究 ,用相差电视显微镜观察。结果 表达GPⅠb Ⅸ Ⅴ复合物的CHO细胞能粘附于并滚动在固着的vWF表面 ,当用表达A15 6V突变的细胞进行试验时 ,这些细胞虽然能粘附于并滚动在固着的vWF表面 ,但是它们滚动的速度明显快于其野生型 ,这表明突变的GPⅠbα与vWF之间的受体配体键的解离速度受损 ,单克隆抗体AN5 1与突变的GPⅠbα结合明显减少 ,表明A15 6V突变产生了GPⅠbα氨基端配体结合区的构象改变。结论 突变致使A15 6V突变细胞与固着的vWF产生较快的解离速度。突变的多肽在GPⅠbα氨基端配体结合区发生构象改变。 展开更多
关键词 血管性血友病因子 血小板糖蛋白Ⅰ 血友病 突变
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部