The string background AdS7XS4 is adopted and the early universe is modeled in the eleven dimensional SUGRA theory that is dual to this background. Specifically the ground state of the vacuum is associated with an arbi...The string background AdS7XS4 is adopted and the early universe is modeled in the eleven dimensional SUGRA theory that is dual to this background. Specifically the ground state of the vacuum is associated with an arbitrary distribution of closed, spin-2 strings, and excited states are modeled as geometric combinations of individual strings. Combinations or combining iterations are, by hypothesis, admissible or geometric if each iteration intrinsically incorporates the metrical scale that is assigned to the individual spin-2 string. It is demonstrated that a generalization of this process, if appropriately calibrated, establishes theoretical fermionic masses that correspond approximately to observed values. The proposed model also predicts a new quark of mass .展开更多
Fermion mass is modeled as an analogue of Weyl curvature, which by hypothesis emerges when closed, spin-2 strings sweep out closed world tubes. Second order curvature classes result when closed world tubes circulate a...Fermion mass is modeled as an analogue of Weyl curvature, which by hypothesis emerges when closed, spin-2 strings sweep out closed world tubes. Second order curvature classes result when closed world tubes circulate and themselves sweep out closed tubes etc. Gauge invariance distinguishes admissible curvature classes from the larger set that would constitute an infinite continuum of possibilities. Admissible curvature classes account for known quark masses and predict a new quark of mass 30 GeV/c2. Super-symmetric interactions among prescribed fermions and super-partners conserve electrical charge, I3, color and generation and are therefore regarded by hypothesis as preserving a minimal irreducible representation of a super-symmetric SU(5).展开更多
AdS/CFT correspondence is adopted and fermion masses are modeled as analogues of Weyl curvature states, which occur by hypothesis when closed spin-2 strings sweep out closed world tubes. Admissible curvature states ar...AdS/CFT correspondence is adopted and fermion masses are modeled as analogues of Weyl curvature states, which occur by hypothesis when closed spin-2 strings sweep out closed world tubes. Admissible curvature states are established by gauge invariance and fundamental mass is attributed to admissible curvature. A consequent spectrum of masses forms an SU(3) symmetry that is invariant under appropriate realizations of the SUGRA GUT interaction. Finally the spin-h/2 nature of the masses that are attributed to curvature emerges as a necessary condition for the relevant SUGRA GUT realizations. Calibration of the proposed model reveals a spectrum of fermion masses that corresponds approximately to observation. Moreover, the proposed model predicts a new quark that is characterized by I3 = -1/2 and by a mass of about 30 GeV/c2.展开更多
Recent discussions attributed fermion mass to an analogue of Weyl curvature which occurred by hypothesis when closed, spin strings swept out closed world tubes. A new degree of freedom and corresponding curvature clas...Recent discussions attributed fermion mass to an analogue of Weyl curvature which occurred by hypothesis when closed, spin strings swept out closed world tubes. A new degree of freedom and corresponding curvature class were attributed to “second order tubes” that were swept out by initially introduced closed tubes, etc. Curvature classes were associated by hypothesis with composite masses where d enoted a mass-less spin field and where a and respectively denoted an LH quark and an RH anti-lepton that were characterized by opposite I3 values and shared a common generation. The resulting model accounted for known quark masses and predicted a new quark of mass 30 GeV/c2. The composite masses form a symmetry, the preservation of which is equivalent to the conservation of electrical charge and string scale. SUGRA interactions that preserve the proposed symmetry can therefore be precisely defined. In this context, gauge transformations that establish the proposed curvature classes also associate with a second realization of the originally generated symmetry, the preservation of which is equivalent to the conservation of string length and of the curvature ?from which the postulated model generates admissible increments of large scale expansion. The latter symmetry is associated by hypothesis with the large scale structure of the observable universe, thereby motivating a theoretical approximation of the total number of galaxies. This result parallels the approximation that is indicated by observation.展开更多
文摘The string background AdS7XS4 is adopted and the early universe is modeled in the eleven dimensional SUGRA theory that is dual to this background. Specifically the ground state of the vacuum is associated with an arbitrary distribution of closed, spin-2 strings, and excited states are modeled as geometric combinations of individual strings. Combinations or combining iterations are, by hypothesis, admissible or geometric if each iteration intrinsically incorporates the metrical scale that is assigned to the individual spin-2 string. It is demonstrated that a generalization of this process, if appropriately calibrated, establishes theoretical fermionic masses that correspond approximately to observed values. The proposed model also predicts a new quark of mass .
文摘Fermion mass is modeled as an analogue of Weyl curvature, which by hypothesis emerges when closed, spin-2 strings sweep out closed world tubes. Second order curvature classes result when closed world tubes circulate and themselves sweep out closed tubes etc. Gauge invariance distinguishes admissible curvature classes from the larger set that would constitute an infinite continuum of possibilities. Admissible curvature classes account for known quark masses and predict a new quark of mass 30 GeV/c2. Super-symmetric interactions among prescribed fermions and super-partners conserve electrical charge, I3, color and generation and are therefore regarded by hypothesis as preserving a minimal irreducible representation of a super-symmetric SU(5).
文摘AdS/CFT correspondence is adopted and fermion masses are modeled as analogues of Weyl curvature states, which occur by hypothesis when closed spin-2 strings sweep out closed world tubes. Admissible curvature states are established by gauge invariance and fundamental mass is attributed to admissible curvature. A consequent spectrum of masses forms an SU(3) symmetry that is invariant under appropriate realizations of the SUGRA GUT interaction. Finally the spin-h/2 nature of the masses that are attributed to curvature emerges as a necessary condition for the relevant SUGRA GUT realizations. Calibration of the proposed model reveals a spectrum of fermion masses that corresponds approximately to observation. Moreover, the proposed model predicts a new quark that is characterized by I3 = -1/2 and by a mass of about 30 GeV/c2.
文摘Recent discussions attributed fermion mass to an analogue of Weyl curvature which occurred by hypothesis when closed, spin strings swept out closed world tubes. A new degree of freedom and corresponding curvature class were attributed to “second order tubes” that were swept out by initially introduced closed tubes, etc. Curvature classes were associated by hypothesis with composite masses where d enoted a mass-less spin field and where a and respectively denoted an LH quark and an RH anti-lepton that were characterized by opposite I3 values and shared a common generation. The resulting model accounted for known quark masses and predicted a new quark of mass 30 GeV/c2. The composite masses form a symmetry, the preservation of which is equivalent to the conservation of electrical charge and string scale. SUGRA interactions that preserve the proposed symmetry can therefore be precisely defined. In this context, gauge transformations that establish the proposed curvature classes also associate with a second realization of the originally generated symmetry, the preservation of which is equivalent to the conservation of string length and of the curvature ?from which the postulated model generates admissible increments of large scale expansion. The latter symmetry is associated by hypothesis with the large scale structure of the observable universe, thereby motivating a theoretical approximation of the total number of galaxies. This result parallels the approximation that is indicated by observation.