We simulate ultra-cold interacting bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Ande...We simulate ultra-cold interacting bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Anderson localization. We use the Hartree-Fock-Bogoliubov formalism in the Bose-Hubbard model to explore the parameter regimes that lead to exponential localization of the ground state in a 3-colour optical lattice and investigate the role of repulsive interactions, harmonic confinement and finite temperature.展开更多
基金supported by contract SFB/TR 12 of the German Research Foundation and through the IB BMBF(Project NZL 07/006)by the New Zealand Foundation for Research,Science and Technology through contract NERF-UOOX0703:Quantum Technologies and the New Zealand International Science and Technology Linkages FundJT and DAWH also acknowledge support from the National Research Foundation and Ministry of Education of Singapor.
文摘We simulate ultra-cold interacting bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Anderson localization. We use the Hartree-Fock-Bogoliubov formalism in the Bose-Hubbard model to explore the parameter regimes that lead to exponential localization of the ground state in a 3-colour optical lattice and investigate the role of repulsive interactions, harmonic confinement and finite temperature.