Twelve representative crude oil samples recovered from six oil fields in the Albertine Graben, Uganda were chosen for this study. The study aimed to understand the genetic relationships between the oils, the inferred ...Twelve representative crude oil samples recovered from six oil fields in the Albertine Graben, Uganda were chosen for this study. The study aimed to understand the genetic relationships between the oils, the inferred depositional environment of the source rocks, maturity of the crude oils, and to gain some insight on the expulsion of the oils from source rocks. The work involved geochemical bulk analysis (asphaltene and liquid chromatographic separations), GC-FID (gas chromatography with a flame ionization detector), and GC-MS (gas chromatography-mass spectrometry) of saturate and aromatic fractions. Bulk analysis shows that the oils are dominated by saturate hydrocarbon fractions (48.7%-62.0%) and are highly waxy (35-56.2 wt%) with low sulfur content (〈 0.1 wt%). The high saturate hydrocarbon and high wax contents are probably due to organic matter input from land plants and/or long-chain alkanes from fresh water algae in lacustrine systems. The low sulfur contents alongside the high wax abundances are consistent with elastic-dominated source rock facies deposited in a non-stratified lacustrine environment. Data from GC-FID and GC-MS analyses such as n-alkane distributions, pristane/phytane ratios, biomarker terpane and sterane, dibenzothiophene and phenanthrene parameters show that the oils belong to a single family and were derived from a elastic predominantly algal source rock deposited under suboxic conditions in a non-stratified freshwater to brackish water lacustrine environment. The data further show that the oils have a very narrow range of maturities and are generated in the peak oil window. The observed narrow range of maturities and inferred lacustrine depositional setting for the source rocks suggest that the kerogen responsible for the generation of the oils is likely to be predominantly type-1 known to display narrow activation energies. This in turn implies that the expulsion of the oil from the source rock occurred as a quick single event hence, the filling of reservoirs in the Albertine Graben probably did not involve late stage expulsion and multiple charges of oil.展开更多
The Albertine Graben is one of the most petroliferous onshore rifts in Africa. It forms the northemmost termination of the western arm of the East African Rift System. Its surface exposures were first studied by Wayla...The Albertine Graben is one of the most petroliferous onshore rifts in Africa. It forms the northemmost termination of the western arm of the East African Rift System. Its surface exposures were first studied by Wayland [1] and Pickford et al. [2] among others. Pickford et al. [2] especially developed the basic stratigraphic framework of the graben which was later modified by the government geoscientists and international oil companies using subsurface data. However, the stratigraphic units were not fully and formally described, and have been used informally in different and often confusing ways. The current study therefore aims to solve this challenge by establishing a coherent stratigraphic scheme for the entire graben through an integral study of surface and subsurface data. The study involves precise description of the type and reference sections for various formations both in exposure and wells; and has therefore led to the development of lithostratigraphic columns of different basins in the graben. The approach reveals that the Semliki area, south of Lake Albert, has the most complete sedimentary succession in the graben, spanning the period from middle Miocene (ca 15 Ma) to Recent. It also reveals that platform deposits, which form a small fraction of the thickness of the basinal succession, represent a highly condensed sequence which only saw deposition at times of Lake highstand.展开更多
文摘Twelve representative crude oil samples recovered from six oil fields in the Albertine Graben, Uganda were chosen for this study. The study aimed to understand the genetic relationships between the oils, the inferred depositional environment of the source rocks, maturity of the crude oils, and to gain some insight on the expulsion of the oils from source rocks. The work involved geochemical bulk analysis (asphaltene and liquid chromatographic separations), GC-FID (gas chromatography with a flame ionization detector), and GC-MS (gas chromatography-mass spectrometry) of saturate and aromatic fractions. Bulk analysis shows that the oils are dominated by saturate hydrocarbon fractions (48.7%-62.0%) and are highly waxy (35-56.2 wt%) with low sulfur content (〈 0.1 wt%). The high saturate hydrocarbon and high wax contents are probably due to organic matter input from land plants and/or long-chain alkanes from fresh water algae in lacustrine systems. The low sulfur contents alongside the high wax abundances are consistent with elastic-dominated source rock facies deposited in a non-stratified lacustrine environment. Data from GC-FID and GC-MS analyses such as n-alkane distributions, pristane/phytane ratios, biomarker terpane and sterane, dibenzothiophene and phenanthrene parameters show that the oils belong to a single family and were derived from a elastic predominantly algal source rock deposited under suboxic conditions in a non-stratified freshwater to brackish water lacustrine environment. The data further show that the oils have a very narrow range of maturities and are generated in the peak oil window. The observed narrow range of maturities and inferred lacustrine depositional setting for the source rocks suggest that the kerogen responsible for the generation of the oils is likely to be predominantly type-1 known to display narrow activation energies. This in turn implies that the expulsion of the oil from the source rock occurred as a quick single event hence, the filling of reservoirs in the Albertine Graben probably did not involve late stage expulsion and multiple charges of oil.
文摘The Albertine Graben is one of the most petroliferous onshore rifts in Africa. It forms the northemmost termination of the western arm of the East African Rift System. Its surface exposures were first studied by Wayland [1] and Pickford et al. [2] among others. Pickford et al. [2] especially developed the basic stratigraphic framework of the graben which was later modified by the government geoscientists and international oil companies using subsurface data. However, the stratigraphic units were not fully and formally described, and have been used informally in different and often confusing ways. The current study therefore aims to solve this challenge by establishing a coherent stratigraphic scheme for the entire graben through an integral study of surface and subsurface data. The study involves precise description of the type and reference sections for various formations both in exposure and wells; and has therefore led to the development of lithostratigraphic columns of different basins in the graben. The approach reveals that the Semliki area, south of Lake Albert, has the most complete sedimentary succession in the graben, spanning the period from middle Miocene (ca 15 Ma) to Recent. It also reveals that platform deposits, which form a small fraction of the thickness of the basinal succession, represent a highly condensed sequence which only saw deposition at times of Lake highstand.