The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. Th...The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.展开更多
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia through Contract Nos.451-03-47/2023-01/200017 and 451-03-66/2024-03/200017 and the Ph.D.fellowship of Slađana Laketić.
文摘The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.