Given the importance of web search volume for reflecting tourists'preferences for certain tourism services and destinations,incorporating these data into forecasting models can significantly improve forecasting pe...Given the importance of web search volume for reflecting tourists'preferences for certain tourism services and destinations,incorporating these data into forecasting models can significantly improve forecasting performance.This study enriches the literature on tourism demand forecasting and tourists'search behavior through segmented Baidu search volume data.First,this study divides Baidu search volume data based on volume sources and periods.Then,by analyzing the most relevant keywords in tourism demand in different segments,this study captures the dynamic characteristics of tourist search behavior.Finally,this study adopts a series of econometric and machine learning models to further improve the performance of tourism demand and forecasting.The findings indicate that tourists’search behavior has changed significantly with the prevalence and popularization of 4G technology and suggest that search volume improves forecasting performance,especially search volume on mobile terminals,from 2014M1–2019M12.展开更多
基金partly supported by the National Natural Science Foundation of China under Grant No.72101197by the Fundamental Research Funds for the Central Universities under Grant No.SK2021007.
文摘Given the importance of web search volume for reflecting tourists'preferences for certain tourism services and destinations,incorporating these data into forecasting models can significantly improve forecasting performance.This study enriches the literature on tourism demand forecasting and tourists'search behavior through segmented Baidu search volume data.First,this study divides Baidu search volume data based on volume sources and periods.Then,by analyzing the most relevant keywords in tourism demand in different segments,this study captures the dynamic characteristics of tourist search behavior.Finally,this study adopts a series of econometric and machine learning models to further improve the performance of tourism demand and forecasting.The findings indicate that tourists’search behavior has changed significantly with the prevalence and popularization of 4G technology and suggest that search volume improves forecasting performance,especially search volume on mobile terminals,from 2014M1–2019M12.