Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electro...Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electron interactions,which manifest as an atomic system with many resonance structures,due to the quasi-degeneracy of orbital energies.In this paper we use the relativistic R-matrix method to investigate the electron-impact broadening of highly charged Ar XV ion spectral lines under the impact approximation.It is found that the results considering resonance structures are significantly different from those of the distorted wave approach.Furthermore,we propose a new empirical formula with a correction term to take into account the effect of resonances for electron-impact widths over a relatively wide range of plasma conditions.The corresponding fitting parameters of the new empirical formula for all 47 calculated transitions are also given with an estimated accuracy within 1%,which should be convenient for practical applications.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://doi.org/10.57760/sciencedb.j00113.00101.展开更多
Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic ...Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic sequence with 62≤Z≤94 based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code.The electron correlations,Breit interaction and quantum electrodynamics effects are taken into account in the present calculations.The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results.For transition energies,our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%.The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac–Hartee–Fock calculations by Grumer et al.[Phys.Rev.A 89062501(2014)]is less than 0.13%along the isoelectronic sequence.Furthermore,the corresponding M1 transition rates are also reported.The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11934004,U1832201,and 12241410)the Science Challenge Project(Grant No.TZ2016005)+1 种基金the CAEP Foundation(Grant No.CX2019022)the Special Innovation Project for National Defense。
文摘Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electron interactions,which manifest as an atomic system with many resonance structures,due to the quasi-degeneracy of orbital energies.In this paper we use the relativistic R-matrix method to investigate the electron-impact broadening of highly charged Ar XV ion spectral lines under the impact approximation.It is found that the results considering resonance structures are significantly different from those of the distorted wave approach.Furthermore,we propose a new empirical formula with a correction term to take into account the effect of resonances for electron-impact widths over a relatively wide range of plasma conditions.The corresponding fitting parameters of the new empirical formula for all 47 calculated transitions are also given with an estimated accuracy within 1%,which should be convenient for practical applications.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://doi.org/10.57760/sciencedb.j00113.00101.
基金the National Natural Science Foundation of China(Grant Nos.11874090,11934004,11404180,11604052,and 11774037)the National Key Research and Development Program of China(Grant No.2017YFA0402300).
文摘Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic sequence with 62≤Z≤94 based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code.The electron correlations,Breit interaction and quantum electrodynamics effects are taken into account in the present calculations.The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results.For transition energies,our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%.The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac–Hartee–Fock calculations by Grumer et al.[Phys.Rev.A 89062501(2014)]is less than 0.13%along the isoelectronic sequence.Furthermore,the corresponding M1 transition rates are also reported.The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas.