期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tri-functionalized polypropylene separator by rGO/MoO_(2) composite for high-performance lithium–sulfur batteries 被引量:9
1
作者 Kun Xu Xin Liang +4 位作者 Lu-Lu Wang Yong Wang ju-feng yun Yi Sun Hong-Fa Xiang 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2810-2818,共9页
The popularity of lithium–sulfur batteries has been increasing gradually due to their ultrahigh theoretical specific capacity and energy density. Nevertheless, they also have lots of drawbacks to be overcome, such as... The popularity of lithium–sulfur batteries has been increasing gradually due to their ultrahigh theoretical specific capacity and energy density. Nevertheless, they also have lots of drawbacks to be overcome, such as poor conductivity, severe volume expansion, and serious“shuttle effect”. In this work, reduced graphene oxide/molybdenum dioxide(rGO/MoO_(2)) composite is synthesized and applied to modify polypropylene separator. The modified polypropylene separator introduces synergistic tri-functions of physical adsorption, chemical interaction and catalytic effects, which can inhibit the“shuttle effect” and enhance the electrochemical performances of lithium-sulfur batteries. In the prepared r GO/MoO_(2) composite, the polar MoO_(2) chemically adsorbs the intermediate lithium polysulfide, while the rGO with good electrical conductivity not only acts as a physical barrier to prevent diffusion of polysulfide ions, but also improves the conversion efficiency of active material intercepted on the separator. As a consequence, the battery assembled with rGO/MoO_(2) modified polypropylene separator exhibits a reversible capacity of 757.5 mAh·g^(-1) after 200 cycles at0.2 C with a negligible capacity decay of 0.207% per cycle,which indicates a good long-period cycling stability. Furthermore, the rate performance and self-discharge suppression are also improved by introducing modified polypropylene separator. It shows that rGO/MoO_(2) composite is a promising material for separator modification in lithium-sulfur batteries. 展开更多
关键词 rGO/MoO_(2)composite Li–S batteries Separator modification Shuttle effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部