The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpola...The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpolarizability P value per CdS partiele decreases as size is reduced to diameter of 31.5 A; however, as CdS size further decreases, this trend is reversed and (J value increases. Substantially, the normalized P value per CdS formula unit, β0, exhibits systematic enhancement with decreasing size. This phenomenon is interpreted in terms of a so-called surfaee contribution mechanism.展开更多
基金supposed by the National Natural Science Foundation of China(Nos.50202009,10074023)the National Postdoctoral Foundation(No.2002031222).
文摘The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpolarizability P value per CdS partiele decreases as size is reduced to diameter of 31.5 A; however, as CdS size further decreases, this trend is reversed and (J value increases. Substantially, the normalized P value per CdS formula unit, β0, exhibits systematic enhancement with decreasing size. This phenomenon is interpreted in terms of a so-called surfaee contribution mechanism.