期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Identification of MicroRNA-Like Molecules Derived from the Antigenome RNA of Hepatitis C Virus: A Bioinformatics Approach
1
作者 juan cristina Ricardo Recarey 《Natural Science》 2016年第4期180-191,共12页
MicroRNAs (miRNAs) are small, noncoding RNA molecules that play important roles in the regulation of gene expression of the cell. Recent studies have described cytoplasmic RNA virus genome- derived miRNAs. Moreover, m... MicroRNAs (miRNAs) are small, noncoding RNA molecules that play important roles in the regulation of gene expression of the cell. Recent studies have described cytoplasmic RNA virus genome- derived miRNAs. Moreover, miRNAs have also been encountered in the reverse strand of the viral mRNA, revealing the presence of miRNAs in replication intermediaries. In order to get insight into the possible role of Hepatitis C Virus (HCV) antigenome in relation to miRNA coding, we computationally identified potential miRNAs on the antigenome of HCV reference strain H77. By utilizing a series of bioinformatics tools, we identified a miRNA present in the antigenomeof HCV H77 strain. This miRNA maps in the 5’non-translated region (5’UTR) of the HCV genome and is found to be conserved among HCV genotypes and sub-types. In silico target prediction generated 17 cellular genes. These potential targets are involved in apoptosis as well as immune response pathways, suggesting that they could play a role in the pathogenesis caused by viral infection. The results of these studies revealed the presence of a viral miRNA in the negative-sense RNA strand used as a replication template for the HCV genome, as observed for other RNA viruses. 展开更多
关键词 Hepatitis C Virus Antigenome miRNA MICRORNA
下载PDF
Hepatitis C virus genetic variability and evolution 被引量:7
2
作者 Natalia Echeverría Gonzalo Moratorio +1 位作者 juan cristina Pilar Moreno 《World Journal of Hepatology》 CAS 2015年第6期831-845,共15页
Hepatitis C virus(HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a singlestranded, positive sense, RNA virus, member of the Flav... Hepatitis C virus(HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a singlestranded, positive sense, RNA virus, member of the Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and the pressure exerted by the host immune system, has driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. HCV evolves by means of different mechanisms of genetic variation. On the one hand, its high mutation rates generate the production of a large number of different but closely related viral variants during infection, usually referred to as a quasispecies. The great quasispecies variability of HCV has also therapeutic implications since the continuous generation and selection of resistant or fitter variants within the quasispecies spectrum might allow viruses to escape control by antiviral drugs. On the other hand HCV exploits recombination to ensure its survival. This enormous viral diversity together with some host factors has made it difficult to control viral dispersal. Current treatment options involve pegylated interferon-α and ribavirin as dual therapy or in combination with a direct-acting antiviral drug, depending on the country. Despite all the efforts put into antiviral therapy studies, eradication of the virus or the development of a preventive vaccine has been unsuccessful so far. This review focuses on current available data reported to date on the genetic mechanisms driving the molecular evolution of HCV populations and its relation with the antiviral therapies designed to control HCV infection. 展开更多
关键词 再结合 QUASISPECIES 丙肝病毒 RNA 进化 抗病毒的治疗
下载PDF
In the era of rapid mRNA-based vaccines:Why is there no effective hepatitis C virus vaccine yet?
3
作者 Natalia Echeverria Victoria Comas +3 位作者 Fabian Aldunate Paula Perbolianachis Pilar Moreno juan cristina 《World Journal of Hepatology》 2021年第10期1234-1268,共35页
Hepatitis C virus(HCV)is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplanta-tion worldwide.Despite direct-acting antiviral therapies f... Hepatitis C virus(HCV)is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplanta-tion worldwide.Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections,there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility.Indeed,the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected.To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must.The coronavirus disease 19(COVID-19)pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2(SARSCoV-2)virus,which has renewed interest on fighting HCV epidemic with vaccination.The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications.We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus,together with some key aspects of HCV immunology which have,so far,ham-pered the progress in this area.The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches,some of which have been recently and successfully employed for SARS-CoV-2 vaccines.Finally,some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV. 展开更多
关键词 Hepatitis C virus Vaccine candidates Nucleic acid-based vaccines Recombinant vector-based vaccines Challenges COVID-19
下载PDF
Bayesian Coalescent Analysis of the Intra-Host Evolution of Hepatitis C Virus: Memory Genomes and Clinical Implications
4
作者 Ricardo Recarey juan cristina 《Natural Science》 2014年第9期615-627,共13页
Genetic variability plays a key role in the biology and medical treatment of RNA viruses. As an RNA virus, Hepatitis C virus (HCV) replicate as complex distributions of closely related genomes termed viral quasispecie... Genetic variability plays a key role in the biology and medical treatment of RNA viruses. As an RNA virus, Hepatitis C virus (HCV) replicate as complex distributions of closely related genomes termed viral quasispecies. The behavior of the evolving HCV quasispecies population is influenced by the ensemble of mutants that compose the viral population. One such influence is the presence of minority subpopulations, termed memory genomes, in the mutant spectra. Biologically relevant mutants have been previously observed to be present as memory genomes in RNA viral populations. For that reason, an in-depth analysis of HCV quasispecies populations is crucial for our understanding viral evolution, drug resistance and therapy outcome. Recently developed next-generation sequencing (NGS) platforms make it possible to investigate viral quasispecies at much greater detail. In order to gain insight into these matters, we have performed a Bayesian coalescent analysis of hypervariable region 1 (HVR1) sequences of a HCV quasispecies population circulating in a chronic patient, recently obtained by ultra-deep sequencing. The results of these studies revealed a mean rate of evolution of HCV HVR1 of the intra-host quasispecies population of 4.80 × 10-2 amino acid substitutions/site/year. A sharp and rapid diversification of the HCV quasispecies isolated from the patient in three different sub-populations was observed. The most abundant sequence in the quasispecies population was not found to be the center of a tight and complex network around this sequence, suggesting that the quasispecies population as a whole efficiently explore a wide sequence space. Co-evolution of relevant amino acid sites had been identified in the HVR1. This speaks of the possible roll of these residues in HVR1 to allow the virus to shift between combinations of residues to escape the immune system while retaining its structure and functions. The results of these studies highlight the importance of minority genomes in HCV population history and evolution, the mutant clouds as reservoirs of phenotypic and genetic variants for virus adaptability, as well as the roll of the mutant spectra to overcome selective constraints. 展开更多
关键词 Hepatitis C Virus EVOLUTION BAYESIAN COALESCENT Analysis QUASISPECIES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部