The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-...The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-based millimeter radar at two sites: Yangbajing, Tibet, China (YBJ), and the Institute of Atmospheric Physics (IAP), Beijing, China. The comparison shows that Himawari-8 missed more CTHs at night than FY-4A, especially at YBJ. It is found that the CTH difference (CTHD;radar CTH minus satellite CTH) for FY-4A and Himawari-8 is 0.06 ± 1.90 km and −0.02 ± 2.40 km at YBJ respectively, and that is 0.93 ± 2.24 km and 0.99 ± 2.37 km at IAP respectively. The discrepancy between the satellites and radar at IAP is larger than that at YBJ. Both satellites show better performance for mid-level and low-level clouds than for high-level clouds at the two sites. The retrievals from FY-4A agree well with those from Himawari-8, with a mean difference of 0.08 km at YBJ and 0.06 km at IAP. It is found that the CTHD decreases as the cloud depth increases at both sites. However, the CTHD has no obvious dependence on cloud layers and fractions. Investigations show that aerosol concentration has little impact on the CTHD. For high and thin clouds, the CTHD increases gradually with the increase of the surface temperature, which might be a key factor causing the regional discrepancy between IAP and YBJ.展开更多
A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering me...A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.展开更多
Background: In coevolutionary interactions between brood parasites and their hosts, host parents are under strong selection to evolve defenses against parasitism. Egg rejection is an efficient and common defense agai...Background: In coevolutionary interactions between brood parasites and their hosts, host parents are under strong selection to evolve defenses against parasitism. Egg rejection is an efficient and common defense against parasitism, although some apparently suitable hosts do not reject cuckoo eggs.Methods: Sparrows Ploceidae are widespread throughout the Old World, and they have a suitable diet for rearing cuckoos, but still they are rarely exploited by brood parasites. To solve such puzzle, we conducted artificial parasitism and cross-fostering experiments in Russet Sparrow (Posset cinnomomeus).Results: The present study showed that Russet Sparrows have no egg recognition ability, but recognize their own nestlings and eject alien chicks or starve them to death. They may use visual cues in chick recognition, although they accept sister species Tree Sparrow (Posset montonus).Conclusions: By rejecting nestlings of foreign species, Russet Sparrows have succeeded to escape from the brood parasitism by cuckoos and other parasites. Our studies shed light on the puzzle why some species are not utilized by cuckoo parasites as hosts,展开更多
Background: Laying sequence has important effects on eggshell color and embryonic development in birds. Some birds can allocate resources unevenly among the eggs within a clutch, prioritizing those at the beginning of...Background: Laying sequence has important effects on eggshell color and embryonic development in birds. Some birds can allocate resources unevenly among the eggs within a clutch, prioritizing those at the beginning of the laying sequence, in order to maximize reproductive success. The changes in egg color according to laying sequence may be an adaptation to pressure from predators or brood parasites.Methods: In this study, effects of laying sequence on egg color and embryonic heart rate in Russet Sparrows(Passer cinnamomeus) were investigated using artificial nest boxes. The eggs were divided into three groups: first to be laid, intermediate in the laying sequence, and last to be laid. We maintained the eggs in an incubator and measured embryonic heart rates.Results: Avian visual modeling showed that the background color brightness of the last eggs laid was significantly higher(whiter) than those of the other eggs. All eggs were about the same size and hatched around 13 days, indicating that laying sequence significantly affected embryonic development speed; the last eggs to be laid developed significantly faster than did the first in the clutch.Conclusions: Our study quantified the effect of laying sequence on egg color variation and proved that laying sequence has an important effect on embryonic heart rate in Russet Sparrows.展开更多
The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM)...The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar(onboard CloudSat), collected from January 2007 to December 2010 over an ocean area(15°N–45°N,145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures;radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances(termed D_(rd)) and in physical structures(termed D_(st)) between cloud profiles. Statistics based on numerous cloud profiles show that D_(rd) decreases monotonically with a decrease in D_(st), which implies that small D_(rd) always accompanies small D_(st). According to the law of D_(rd) and D_(st), the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.展开更多
基金This work was funded by the National Natural Science Found-ation of China(Grant Nos.41775032 and 41275040).
文摘The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-based millimeter radar at two sites: Yangbajing, Tibet, China (YBJ), and the Institute of Atmospheric Physics (IAP), Beijing, China. The comparison shows that Himawari-8 missed more CTHs at night than FY-4A, especially at YBJ. It is found that the CTH difference (CTHD;radar CTH minus satellite CTH) for FY-4A and Himawari-8 is 0.06 ± 1.90 km and −0.02 ± 2.40 km at YBJ respectively, and that is 0.93 ± 2.24 km and 0.99 ± 2.37 km at IAP respectively. The discrepancy between the satellites and radar at IAP is larger than that at YBJ. Both satellites show better performance for mid-level and low-level clouds than for high-level clouds at the two sites. The retrievals from FY-4A agree well with those from Himawari-8, with a mean difference of 0.08 km at YBJ and 0.06 km at IAP. It is found that the CTHD decreases as the cloud depth increases at both sites. However, the CTHD has no obvious dependence on cloud layers and fractions. Investigations show that aerosol concentration has little impact on the CTHD. For high and thin clouds, the CTHD increases gradually with the increase of the surface temperature, which might be a key factor causing the regional discrepancy between IAP and YBJ.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41775032 and 41275040)
文摘A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.
基金supported by the National Natural Science Foundation of China(Nos.31672303 to CY,31472013 and 31772453 to WL)
文摘Background: In coevolutionary interactions between brood parasites and their hosts, host parents are under strong selection to evolve defenses against parasitism. Egg rejection is an efficient and common defense against parasitism, although some apparently suitable hosts do not reject cuckoo eggs.Methods: Sparrows Ploceidae are widespread throughout the Old World, and they have a suitable diet for rearing cuckoos, but still they are rarely exploited by brood parasites. To solve such puzzle, we conducted artificial parasitism and cross-fostering experiments in Russet Sparrow (Posset cinnomomeus).Results: The present study showed that Russet Sparrows have no egg recognition ability, but recognize their own nestlings and eject alien chicks or starve them to death. They may use visual cues in chick recognition, although they accept sister species Tree Sparrow (Posset montonus).Conclusions: By rejecting nestlings of foreign species, Russet Sparrows have succeeded to escape from the brood parasitism by cuckoos and other parasites. Our studies shed light on the puzzle why some species are not utilized by cuckoo parasites as hosts,
基金supported by the National Natural Science Foundation of China(No.31672303 to CY,and 31772453 to WL)
文摘Background: Laying sequence has important effects on eggshell color and embryonic development in birds. Some birds can allocate resources unevenly among the eggs within a clutch, prioritizing those at the beginning of the laying sequence, in order to maximize reproductive success. The changes in egg color according to laying sequence may be an adaptation to pressure from predators or brood parasites.Methods: In this study, effects of laying sequence on egg color and embryonic heart rate in Russet Sparrows(Passer cinnamomeus) were investigated using artificial nest boxes. The eggs were divided into three groups: first to be laid, intermediate in the laying sequence, and last to be laid. We maintained the eggs in an incubator and measured embryonic heart rates.Results: Avian visual modeling showed that the background color brightness of the last eggs laid was significantly higher(whiter) than those of the other eggs. All eggs were about the same size and hatched around 13 days, indicating that laying sequence significantly affected embryonic development speed; the last eggs to be laid developed significantly faster than did the first in the clutch.Conclusions: Our study quantified the effect of laying sequence on egg color variation and proved that laying sequence has an important effect on embryonic heart rate in Russet Sparrows.
基金supported by the National Natural Science Foundation of China (Grant 41775032)Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant QYZDY-SSW-DQC027)
文摘The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar(onboard CloudSat), collected from January 2007 to December 2010 over an ocean area(15°N–45°N,145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures;radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances(termed D_(rd)) and in physical structures(termed D_(st)) between cloud profiles. Statistics based on numerous cloud profiles show that D_(rd) decreases monotonically with a decrease in D_(st), which implies that small D_(rd) always accompanies small D_(st). According to the law of D_(rd) and D_(st), the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.