期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Silicon thermo-optic phase shifters:a review of configurations and optimization strategies
1
作者 Jorge Parra juan navarro-arenas Pablo Sanchis 《Advanced Photonics Nexus》 2024年第4期1-17,共17页
Silicon photonics(SiPh)has emerged as the predominant platform across a wide range of integrated photonics applications,encompassing not only mainstream fields such as optical communications and microwave signal proce... Silicon photonics(SiPh)has emerged as the predominant platform across a wide range of integrated photonics applications,encompassing not only mainstream fields such as optical communications and microwave signal processing but also burgeoning areas such as artificial intelligence and quantum processing.A vital component in most SiPh applications is the optical phase shifter,which is essential for varying the phase of light with minimal optical loss.Historically,SiPh phase shifters have primarily utilized the thermo-optic coefficient of silicon for their operation.Thermo-optic phase shifters(TOPSs)offer significant advantages,including excellent compatibility with complementary metal-oxide-semiconductor technology and the potential for negligible optical loss,making them highly scalable.However,the inherent heating mechanism of TOPSs renders them power-hungry and slow,which is a drawback for many applications.We thoroughly examine the principal configurations and optimization strategies that have been proposed for achieving energy-efficient and fast TOPSs.Furthermore,we compare TOPSs with other electro-optic mechanisms and technologies poised to revolutionize phase shifter development on the SiPh platform. 展开更多
关键词 thermo-optic coefficient phase shifter silicon photonics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部