The direct carbothermic reduction of marmatite in the presence of lime was studied by thermogravimetric method to determine the technical feasibility to produce Zn(g)without polluting with SO2(g).X-ray diffraction ana...The direct carbothermic reduction of marmatite in the presence of lime was studied by thermogravimetric method to determine the technical feasibility to produce Zn(g)without polluting with SO2(g).X-ray diffraction analysis of partially reacted samples indicated that the reduction occurred through the formation of ZnCaOS and Ca2Fe2O5 as intermediate products to yield Zn(g),and solid Fe and Ca S as the final products.Temperature had the major effect on the rate of reduction.Complete conversion of marmatite was obtained at 1100℃in about 10 min using 300 mg samples with molar ratio of(Zn,Fe)S:CaO:C equal to 1:1:1.The kinetics of the overall reduction reaction was analyzed by the model ln(1-X)=-kt,which represented the data well up to a fractional conversion of 0.95 in the temperature range of 1000-1150℃.The determined activation energy in this temperature range was 257 k J/mol.The results demonstrated the technical feasibility to produce Zn(g)by this method without producing noxious SO2(g)emissions.展开更多
基金the financial support of Juan Yamid CARVALLO during his graduate studies。
文摘The direct carbothermic reduction of marmatite in the presence of lime was studied by thermogravimetric method to determine the technical feasibility to produce Zn(g)without polluting with SO2(g).X-ray diffraction analysis of partially reacted samples indicated that the reduction occurred through the formation of ZnCaOS and Ca2Fe2O5 as intermediate products to yield Zn(g),and solid Fe and Ca S as the final products.Temperature had the major effect on the rate of reduction.Complete conversion of marmatite was obtained at 1100℃in about 10 min using 300 mg samples with molar ratio of(Zn,Fe)S:CaO:C equal to 1:1:1.The kinetics of the overall reduction reaction was analyzed by the model ln(1-X)=-kt,which represented the data well up to a fractional conversion of 0.95 in the temperature range of 1000-1150℃.The determined activation energy in this temperature range was 257 k J/mol.The results demonstrated the technical feasibility to produce Zn(g)by this method without producing noxious SO2(g)emissions.